XAVFLI XUDUDLARNI MASOFADAN VIDEO MONITORING QILISH TIZIMI

Authors

  • Maxamatov Sanjar Erkin o’g’li Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti radio va mobil aloqa fakulteti tyuteri

Keywords:

Uchuvchi dron, Arduino plata, dasturiy muhit, uchuvchisiz uchish apparati, masofadan boshqarish, boshqaruv joylari, multispektral, aviatsiya, reglament.

Abstract

So'nggi bir necha yil ichida, uchuvchisiz uchish apparatlari yoki uchuvchisiz uchish qurilmalari, butun dunyoda texnologiya, xavfsizlik masalalari, qoidalarni qamrab oladigan eng dolzarb mavzu bo'ldi, chunki u o'zining ajoyib yutuqlari va masofadan boshqarish. Uchuvchisiz uchish apparatlari rivojlanishini tasniflash va taqqoslashni, shuningdek, insonlarni ehtiyojini qondirish va harbiy sohalarda turli xil imkoniyatlarga ega bo'lgan apparat va dasturiy ta'minot dizaynidagi qiyinchiliklarni yoritib beradi. Bundan tashqari, uchuvchisiz uchish apparatlari ya’ni dronlar bilan xavfsizlik masalalari, uchuvchisiz uchish uchun mavjud qoidalar va ko'rsatmalar, cheklovlar va mumkin bo'lgan yechimlar muhokama qilindi. Ushbu maqolada uchuvchi dron yaratish va unga mos keladigan video kamera o’rnatish orqali videoni nazorat qilish masalasi ko’rildi.

References

Azeta, J., Bolu, C., Hinvi, D., & Abioye, A. A. (2019). Obstacle detection using ultrasonic sensor for a mobile robot. IOP Conference Series: Materials Science and Engineering, 707(1). https://doi.org/10.1088/1757-899X/707/1/012012

Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E., Ye, Z., & Weber, G. (Eds.). (2015). Advances in Visual Computing (Vol. 9474). Springer International Publishing. https://doi.org/10.1007/978-3-319-27857-5

Borenstein, J., & Koren, Y. (n.d.). Communications __________________ _ Obstacle A voidance with Ultrasonic Sensors. In IEEE JOURNAL OF ROBOTICS AND AUTOMATION (Vol. 4, Issue 2).

Carullo, A., & Parvis, M. (2001). An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors Journal, 1(2), 143–147. https://doi.org/10.1109/JSEN.2001.936931

Cavalcante, T. R. F., Bessa, I. V. de, & Cordeiro, L. C. (2017). Planning and Evaluation of UAV Mission Planner for Intralogistics Problems. Brazilian Symposium on Computing System Engineering, SBESC, 2017-November, 9–16. https://doi.org/10.1109/SBESC.2017.8

Gageik, N., Benz, P., & Montenegro, S. (2015). Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access, 3, 599–609. https://doi.org/10.1109/ACCESS.2015.2432455

Gageik, N., Müller, T., & Montenegro, S. (2012). OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER.

Hong, Y., Kim, S., Kim, Y., & Cha, J. (2021). Quadrotor path planning using A* search algorithm and minimum snap trajectory generation. ETRI Journal, 43(6), 1013–1023. https://doi.org/10.4218/etrij.2020-0085

Hsu, Y.-H., & Gau, R.-H. (2020). Reinforcement Learning-Based Collision Avoidance and Optimal Trajectory Planning in UAV Communication Networks. IEEE Transactions on Mobile Computing, 21(1), 306–320. https://doi.org/10.1109/tmc.2020.3003639

IEEE Staff, & IEEE Staff. (n.d.). 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Kuo, P. H., Li, T. H. S., Chen, G. Y., Ho, Y. F., & Lin, C. J. (2016). A migrant-inspired path planning algorithm for obstacle run using particle swarm optimization, potential field navigation, and fuzzy logic controller. Knowledge Engineering Review, 32. https://doi.org/10.1017/S0269888916000151

Mandloi, D., Arya, R., & Verma, A. K. (2021). Unmanned aerial vehicle path planning based on A* algorithm and its variants in 3d environment. International Journal of Systems Assurance Engineering and Management, 12(5), 990–1000. https://doi.org/10.1007/s13198-021-01186-9

Sanchez, J., Yumang, A., & Caluyo, F. (2015). RFID Based Indoor Navigation with Obstacle Detection Based on A* Algorithm for the Visually Impaired. International Journal of Information and Electronics Engineering, 5(6), 428–432. https://doi.org/10.7763/ijiee.2015.v5.572

Singla, A., Padakandla, S., & Bhatnagar, S. (2021). Memory-Based Deep Reinforcement Learning for Obstacle Avoidance in UAV with Limited Environment Knowledge. IEEE Transactions on Intelligent Transportation Systems, 22(1), 107–118. https://doi.org/10.1109/TITS.2019.2954952

Warren, C. W. (n.d.). Global Path Planning Using Artificial Potential Fields.

Watanabe, Y., Calise, A. J., & Johnson, E. N. (2007). Vision-Based Obstacle Avoidance for UAVs.

S. G. Gupta, M. M. Ghonge, and P. Jawandhiya, "Review of unmanned aircraft system (UAS)," International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, pp. pp: 1646-1658, 2013

I. s. c. AN/190. unmanned Aircraft system [Online]. Available: www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf

INTERNET SAYTLARI:

https://www.droneybee.com/how-quadcopters-work/

https://www.google.com/search?q=Uchuvchi+droni+ko%E2%80%99rinish+tarkibi&tbm=isch&ved=2ahUKEwidp9zOs_n5AhXhtYsKHR7CBHYQ2-cCegQIABAA&oq=Uchuvchi+droni+ko%E2%80%99rinish+tarkibi&gs_lcp=CgNpbWcQA1AAWABgkQpoAHAAeACAAZYBiAGWAZIBAzAuMZgBAKoBC2d3cy13aXotaW1nwAEB&sclient=img&ei=JrETY538E-HrrgSehJOwBw&bih=657&biw=1366#imgrc=Lb5eoV022Cz3BM

https://oscarliang.com/flight-controller-explained/

https://oscarliang.com/quadcopter-hardware-overview/

https://dronebotworkshop.com/how-does-a-quadcopter-work/

https://www.dronezon.com/learn-about-drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-direction-design-explained/

Downloads

Published

2022-10-01