SPAM XABARLARNI ANIQLASHNING MASHINALI O’QITISH USULI
Keywords:
Spam,Spammerlar,Tayanch vektorAbstract
Spam-xabarlar ko‘p sonli qabul qiluvchilarga yuboriladigan, ko‘pincha mahsulot yoki xizmatni reklama qilish yoki targ‘ib qilish uchun yuboriladigan kiruvchi va kerak bo‘lmagan xabarlardir. Ular turli kanallar, jumladan, elektron pochta, matnli xabar, ijtimoiy media va lahzali xabarlar orqali yuborilishi mumkin. Spam xabarlar xavfsizlikka xavf tug‘dirishi mumkin. Spam xabarlar fishing web-sahifalari yoki zararli dasturlarga havolalarni o‘z ichiga olishi mumkin va ular foydalanuvchining shaxsiy yoki moliyaviy ma’lumotlarni taqdim etishga urinishi mumkin.
Spam xabarlarni aniqlashning turli xil usullari mavjud bo‘lib, mazkur maqolada spam xabarlarni aniqlashning modifikatsiyalangan tayanch vektor usuli ko‘rib chiqilgan.
References
SlickText. 44 Mind-Blowing SMS Marketing and Texting Statistics. 2023. Available online: https://www.slicktext.com/blog/2018/11/44-mind-blowing-sms-marketing-and- texting-statistics/ (accessed on 26 February 2023).
Sonowal, G.; Kuppusamy, K.S. SmiDCA: An Anti-Smishing Model with Machine Learning Approach. Comput. J. 2018, 61, 1143–1157. [Google Scholar] [CrossRef]
SlickText. 17 Spam Text Statistics & Spam Text Examples. 2023. Available online: https://www.slicktext.com/blog/2022/10/17-spam-text-statisitics-for-
/ (accessed on 26 February 2023).
R.Khamdamov, E.Haydarov. Mathematical Model and Methods for Filtering an Email Message // International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities (ICISCT 2021). Tashkent-2021. -4p.
(3) Scopus
R.Khamdamov, E.Haydarov. Detecting spam messages using the naive Bayes algorithm of basic machine learning // International Conference on “Information Science and Communications Technologies: Applications, Trends and Opportunities (ICISCT 2021). Tashkent-2021. -3p. (3) Scopus