DIFFERENSIAL TENGLAMALAR SISTEMASI UCHUN KOSHI MASALASI
Ключевые слова:
differensial tenglamalar sistemasi, Koshi masalasi, kasr tartibli differensial operatorlar, Dalamber usuli.Аннотация
Ushbu maqolada kasr tartibli diffrerensial operatorlarni o‘z ichiga oluvchi o‘zgarmas koeffitsiyentli bir jinsli bo‘lmagan differensial tenglamalar sistemasi uchun qo‘yilgan Koshi masalasining yechimi Dalamber usulidan foydalanib topilgan. Bunda qo‘yilgan masala ikkinchi tur Volterra integral tenglamasiga ekvivalent keltirib, integral tenglamaning yechimi ketma-ket yaqinlashish usulidan foydalanib topilgan.
Библиографические ссылки
A.O.Mamanazarov, O.A. Abdubannopova. Kasr tartibli differensial operatorni o‘z ichiga oluvchi chiziqli differensial tenglamalar sistemasini yechishning bir usuli haqida. O‘zbekistonda fanlararo innovatsiyalar va ilmiy tadqiqotlar jurnali. 14-son. 464-467-betlar. 2022.
A.O. Mamanazarov, O.A. Abdubannopova, M.A. G‘anijonova. Riman-Liuvill ma’nosidagi kasr tartibli differensial operatorni o‘z ichiga oluvchi chiziqli differensial tenglamalar sistemasini yechishning dalamber usuli. So‘ngi ilmiy tadqiqotlar nazariyasi. 5-son. 42-46-betlar. 2022.
A.A.Kilbas, H.M.Srivastava and J.J.Trujilo. Theorey and Applications of Fractional Differential equations. North Holland Mathematics studies, 204 p.
A.Q.O‘rinov. Maxsus funksiyalar va maxsus operatorlar. Farg‘ona: “Farg‘ona” nashriyoti, 2012, -112 bet.
Podlubny I. Fractional Differential Equations: An introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their solution, Mathematics in Science and Engineering. Vol.198. San Diego: Academic Press, 1999.
M.S.Salohiddinov. Integral tenglamalar. Toshkent: Yangiyul polygraph Service, 2007, -256 bet.