LAZER BILAN INDUKSIYALANGAN GRAFEN ASOSIDAGI FIZIK VA KIMYOVIY SENSOR MEXANIZMLARI

Авторы

  • Sherzodjon Ahmedov
  • Gulnoza Djumayeva

Аннотация

Lazer bilan induktsiyalangan grafen (LIG) uglerod o'z ichiga olgan prekursorlarni to'g'ridan-to'g'ri nurlantirish orqali ishlab chiqariladi va tabiiy ravishda uch o'lchamli g‘ovakli struktura sifatida namoyon bo'ladi [1]. Tayyorlash qulayligi, vaqtni tejash, atrof-muhitga zarar yetkazmaslik, arzon narxlardagi va xom ashyo toifalarini kengaytirish kabi afzalliklari bilan LIG va uning hosilalari sensorlarda keng qo'llanilishga erishdi. Bu taqiladigan (носимые устройства) qurilmalar, kasalliklar diagnostikasi, aqlli robotlar va ifloslanishni aniqlash kabi turli sohalarda kuzatilgan. Bu maqolada birinchi navbatda fizik, biologik va kimyoviy aniqlash uchun grafenga asoslangan sensorlar ko'rib chiqiladi, so'ngra lazer yordamida grafen ishlab chiqarish uchun umumiy tayyorgarlik usullari taqdim etiladi [2-3]. LIG ning tayyorlanishi va afzalliklari, sezish mexanizmlari va har xil turdagi yangi LIGga asoslangan sensorlarning xususiyatlari har tomonlama ko'rib chiqiladi.

Библиографические ссылки

Chabot, V.; Higgins, D.; Yu, A.; Xiao, X.; Chen, Z.; Zhang, J. A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications to Energy and the Environment. Energy Environ. Sci. 2014, 7, 1564−1596.

Liu, Y.; Dong, X.; Chen, P. Biological and Chemical Sensors Based on Graphene Materials. Chem. Soc. Rev. 2012, 41, 2283−307.

Yuan, W. J.; Liu, A. R.; Huang, L.; Li, C.; Shi, G. Q. High-Performance NO2 Sensors Based on Chemically Modified Graphene. Adv. Mater. 2013, 25, 766−771.

Park, S.; Park, M.; Kim, S.; Yi, S. G.; Kim, M.; Son, J.; Cha, J.; Hong, J.; Yoo, K. H. NO2 Gas Sensor Based on Hydrogenated Graphene. Appl. Phys. Lett. 2017, 111, 213102.

Kwon, S. S.; Shin, J. H.; Choi, J.; Nam, S.; Park, W. I. Defect- Mediated Molecular Interaction and Charge Transfer in Graphene Mesh Glucose Sensors. ACS Appl. Mater. Interfaces 2017, 9, 14216− 14221.

Hernaez, M. Applications of Graphene-Based Materials in Sensors. Sensors 2020, 20, 3196.

Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. Graphene Electronic Tattoo Sensors. ACS Nano 2017, 11, 7634−7641.

Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano 2017, 11, 4507−4513.

Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.-M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett. 2009, 9, 1039−1044.

Gao, L.; Li, Q.; Li, R.; Yan, L.; Zhou, Y.; Chen, K.; Shi, H. Highly Sensitive Detection for Proteins Using Graphene Oxide-Aptamer Based Sensors. Nanoscale 2015, 7, 10903−10907.

Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection. Adv. Mater. 2010, 22, 2206−2210.

Kaladevi, G.; Meenakshi, S.; Pandian, K.; Wilson, P. Synthesis of Well-Dispersed Silver Nanoparticles on Polypyrrole/Reduced Gra- phene Oxide Nanocomposite for Simultaneous Detection of Toxic Hydrazine and Nitrite in Water Sources. J. Electrochem. Soc. 2017, 164, B620−B631.

Chang, J.; Zhou, G.; Christensen, E. R.; Heideman, R.; Chen, J. Graphene-Based Sensors for Detection of Heavy Metals in Water: A Review. Anal. Bioanal. Chem. 2014, 406, 3957−3975.

LEARNING AND TEACHER COLLABORATION IS AN IMPORTANT EDUCATIONAL PART OF INDEPENDENT WORK METHODOLOGY. (2024). Western European Journal of Modern Experiments and Scientific Methods, 2(5), 195-197. https://westerneuropeanstudies.com/index.php/1/article/view/986

Shodmanov, J. B., Eshchanov, B. X., Ahmedov, Sh. T. (2022). Aromatik uglevodorodlarda yorug‘likning noqutblangan molekulyar sochilishi. Academic research in educational sciences, 3(3), 1127-1137.

Sherzodjon To‘Lqin O‘G‘Li Ahmedov, Bahodir Xudoyberganovich Eshchanov, & Jalol Baxtiyor O‘G‘Li Shodmonov (2022). AROMATIK UGLEVODORODLARDA MOLEKULALARARO O‘ZARO TA’SIRLASHUVNING RAMAN SPEKTRLARIDA NAMOYON BO‘LISHI. Academic research in educational sciences, 3 (3), 693-705.

Ganeev, R.A., Eshchanov, B.K., Iqbal, M. et al. Frequency conversion of laser pulses in gold plasma: blueshift and splitting of high-order harmonics. Appl. Phys. B 130, 91 (2024). https://doi.org/10.1007/s00340-024-08237-6

SURFACE ENHANCED RAMAN SCATTERING: NEW CONCEPTS IN MECHANISMS AND MODELING. (2024). Western European Journal of Modern Experiments and Scientific Methods, 2(4), 127-134. https://westerneuropeanstudies.com/index.php/1/article/view/709

Ahmedov, S., Muxtoraliyeva, M., & Sobitova, Z. (2023). EMISSION VA YUTILISH SPEKTRLARINI KUZATISH UCHUN QO ‘LDA TAYYORLANGAN QEWCAM SPEKTROMETRI. O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI, 2(20), 32-41.

Ahmedov Sherzodjon To‘lqin o‘g‘li. (2023). Nanostrukturali Metall Sirtlarda Raman Signalining Kuchayishi. Diversity Research: Journal of Analysis and Trends, 1(2), 64–72. Retrieved from https://academiaone.org/index.php/2/article/view/72

Eshchanov B., Ahmedov S. METHODOLOGY FOR PROCESSING RAMAN SPECTRAL RESULTS: QUANTUM-CHEMICAL CALCULATION. Web of Scientist: International Scientific Research Journal, 3 (12), 459–470. – 2022.

To‘raxodjayevna, Shermetova Sayyora. "UMUMIY O ‘RTA TA ‘LIM MAKTABLARIDA O‘QUVCHILARNING FIZIKA FANINI O‘QITISHDA MUSTAQIL ISHNING NAZARIY VA AMALIY ASOSLARI.: UMUMIY O‘RTA TA ‘LIM MAKTABLARIDA O ‘QUVCHILARNING FIZIKA FANINI O ‘QITISHDA MUSTAQIL ISHNING NAZARIY VA AMALIY ASOSLARI." (2023): 356-360.

Загрузки

Опубликован

2024-06-09