QUANTUM DOT PHYSICS

Authors

  • Muminov Islamjon Arabboyevich Fergana State University, Physics and Mathematics doctor of philosophy (PhD); ima220790@mail.com
  • Sobirova Dilnoza Davlatjon qizi Academic Lyceum of Fergana Polytechnic Institute teacher of physics

Keywords:

Quantum dots, Size-dependent properties, Lighting applications, Energy applications, Bio-fluorescent detection, Photo physics, Nanoparticles, Ligand schemes, Shell architectures, Particle-in-a-box model, Quantum dot models, Optical properties, Size effects, Ligand impact, Photo physics quantification.

Abstract

Quantum dots (QDs) have emerged as promising candidates for applications in lighting, energy, and bio-fluorescent detection due to their unique size-dependent properties. The photo physics of QDs is primarily governed by the size of the nanoparticles, although the influence of ligand schemes and shells has been recognized as significant. This chapter provides a comprehensive overview of different QD models, beginning with the fundamental "particle-in-a-box" model and progressing to more advanced and intricate models employed for quantifying QD photo physics. The discussion delves into the intricate interplay between QD size, ligand configurations, and shell architectures, elucidating their effects on the optical properties of QDs. By understanding these models, researchers can gain insights into the design and optimization of QDs for various applications, thus paving the way for enhanced performance and efficiency in lighting, energy generation, and bio-fluorescent detection systems.

References

Awschalom, D. D., L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta (2013). "Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors". Science 339,1174-1179 (cited on page 8).

J. M. Martinis (2013). "Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits". Phys. Rev. Lett. I l l , 080502 (cited on page 83).

Bennett, C. H. and G. Brassard (1984). "Quantum cryptography: Public key distribution and coin tossing". Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, 175-179 (cited on page 12).

Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret (2010). "Phase-preserving amplification near the quantum limit with a Josephson ring modulator". Nature 465, 64-68 (cited on page 64).

Arabboyevich, M. I. (2023). MAGNIT MAYDONDAGI ELEKTRONLAR HARAKATI, LANDAU KVANTLASHISH SHARTLARI. SUSTAINABILITY OF EDUCATION, SOCIO-ECONOMIC SCIENCE THEORY, 1(6), 20-24.

Arabboyevich, M. I., & Alijon o’g’li, M. A. (2023). IDEAL GAZLARDA KVANT STATISTIKASI TAHLILI. PEDAGOGICAL SCIENCES AND TEACHING METHODS, 2(20), 235-237.

Muminov, I. A., & Muminova, M. (2023). QATTIQ JISMLARNING KRISTALL PANJARALARI. Oriental renaissance: Innovative, educational, natural and social sciences, 3(3), 1314-1317.

Arabboyevich, M. I., & Nabijon o‘g, S. U. B. (2022). QATTIQ JISM KRISTALLARINI O’STIRISH NAZARIYASI. Scientific Impulse, 1(3), 696-698.

Mo’minov, I., & Jasurbek, T. (2022). NАZАRIY MЕХАNIKАNING TARIXI. IJODKOR O'QITUVCHI, 2(19), 601-605.

Ахмедов, Б. Б., Муминов, И. А., & Хошимов, Х.А.У. (2022). РАЗМЕРНОЕ КВАНТОВАНИЕ В ПОТЕНЦИАЛЬНОЙ ЯМЕ ПРЯМОУГОЛЬНОЙ ФОРМЫ. Oriental renaissance: Innovative, educational, natural and social sciences, 2(Special Issue 4-2), 1032-1036.

Muminov, I. A., Axmedov, B.B.,&Maxmudov, A. A. O. G. L. (2022). YARIMO’TKAZGICH ASOSIDAGI TURLI STRUKTURALI NANOTRUBKALAR. Oriental renaissance: Innovative, educational, natural and social sciences, 2(4), 517-523.

Baxromovich, A.B.,& Alijon o’g’li, M.A.(2022). YARIMO’TKAZGICH ASOSIDAGI TURLI STRUKTURALI NANOTRUBKALAR Muminov Islomjon Arabboyevich.

Muminov, I. A., Akhmedova, S.Y.K., Sobirjonova, D.A.K., & Khomidjonov, D. K. U. (2021). HETEROSTRUCTURES OF ANTIMONIDE-BASED SEMICONDUCTORS. Oriental renaissance: Innovative, educational, natural and social sciences, 1(11), 952-959.

Rasulov, R. Y., Akhmedov, B. B., Muminov, I. A., & Umarov, B. B. (2021). Crystals with tetrahedral and hexagonal lattices. Fergana. Classic.-2021.

Расулов, В. Р., Расулов, Р. Я., Муминов, И. А., Эшболтаев, И. М., & Кучкаров, М. (2021). МЕЖДУЗОННОЕ ТРЕХФОТОННОЕ ПОГЛОЩЕНИЕ В INSB.

Ахмедов, Б. Б., & Муминов, И. А. (2021). УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ДВУМЕРНОГО ВОЛНОВОГО ВЕКТОРА. EDITOR COORDINATOR, 537.

Rasulov, V. R., Akhmedov, B. B., & Muminov, I. A. (2021). Interband one-and two-photon absorption of polarized light in narrow-gap crystals. Scientific-technical journal, 4(1), 28-31.

Yavkachovich, R. R., Ogli, M. A. A., Umidaxon, R., Makhliyo, M., & Arabboyevich, M. I. (2019). Agency of surface recombination on volt-ampere characteristic of the diode with double injection. European science review, (11-12), 70-73.

Downloads

Published

2023-06-20