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INTRODUCTION 

Problem Statement 

The study of boundary value problems for mixed-type equations is one of the central 

problems of the theory of partial differential equations of its appliedimportance. For the 

first time, F.I. Frankl [1] found important applications of these problems in gas 

dynamics, and I.N. Vekua [2] pointed out the importance of the problem of mixed-type 

equations in solving problems arising in the momentless theory of shells. 

So far, the studies of boundary value problems for mixed-type equations with 

singular coefficients have been carried out mainly in the case of two independent 

variables. However, such problems in three-dimensional domains remain poorly studied. 

The Tricomi problem for a mixed elliptic-hyperbolic equation in three-dimensional 

space using the method of integral Fourier transform was first studied in [3]. After this 

work, a number of works appeared in which boundary value problems for various 

elliptic-huperbolic equations  in three-dimensional domains were considered (see, for 

example, [4], [5], [6], [7], [8], [9], [10], [11], [12]). 

В данной работе изучается пространственная задача Трикоми для трехмерного 

уравнения смешанного типа с сингулярным коэффициентом в области, эллиптическая 

часть которой четверти цилиндра, а гиперболическая часть – треугольная прямая 

призма. 

Let {( , , ) :( , ) , (0, )}x y z x y z c     where  - is the finite one-connected region 

of the plane xOy  , bounded at 0y   by the arc   2 2
0 , : 1, 0, 0x y x y x y       

and segment   , : 0,0 1OM x y x y    , and at 0y   - by segments 

  , : 0,0 1/ 2OQ x y x y x      and,   , : 1,1/ 2 1QP x y x y x    

 0,0O O  0,1M M  1,0P P  1/2, 1/2Q Q  . 

Let introduce the notations:  0 0y    1 0y   ; 

 0 0y    , ; ,  1 0y        0 0, , : 0,S x y z c  , 

    1 , , : 0,S x y z OM c  ,   ;     2 , , : 0,S x y z OQ c  ; 

    3 , , : 0S x y z z   ,     4 , , :S x y z z c    

In the domain   consider the equation 
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2
(sgn ) 0xx yy zz zU y U U U

z


    ,                               (1) 

Where is. (0,1/ 2)   

In the region   equation (1) belongs to a mixed type, namely in the region 0

elliptic type, and in the region 1 - hyperbolic type, and 0z  are the planes of 

singularity of the equation, and when passing through the rectangle 0 1  the 

equation changes its type. 

We investigate the following problem for equation (1) in the region  . 

Problem T (Trikomi). Find the function  , ,U x y z , satisfying in the region   

equation (1) and the following conditions: 

       2,2,2 2
, , 0 1 0, , , , , ;x y z x y zU x y z C C U U z U C                   (2) 

   
0

, , , ,
S

U x y z F x y z ;                                                (3) 

 
1

, , 0
S

U x y z  ,  
2

, , 0
S

U x y z    ,                                      (4) 

 
3

, , 0
S

U x y z  ,   
4

, , 0
S

U x y z   ,                                    (5) 

as well as the bonding condition 

       , 0, , 0, , 0,1 , 0,y yU x z U x z x z c     ,                 (6) 

where  , ,F x y z  is a given function. 

Note that the posed problem at 0  is studied in [13]. 

2. Construction of partial solutions of equation (1) in the region of hyperbolicity 

and ellipticity of the equation 

We find nontrivial solutions of equation (1) satisfying conditions (4), (5). Dividing 

the variables by the formula      , , ,U x y z w x y Z z , from equation (1) and 

boundary conditions (4) and (5), we obtain the following problems: 

     sgn 0, , 0xx yyw y w w x y x     ,                             (7) 

     0, 0, (0,1); , 0, 0,1/2 ;w y y w x x x                                 (8) 

         
2

0, 0 ; 0 0, 0.Z z Z z Z z z c Z Z c
z


                         (9) 

Problem (9) has nontrivial solutions of the form [14], [15], [16] 

   1/ 2
1/ 2 / , ,m mZ z z J z c m N

 
                               (10) 

where  lJ z   is the Bessel function [17], and m m   is the positive root of the 

equation ,  1/ 2 0J c    
2

/m m c  m N  

According to [17], the system of eigenfunctions (10) is orthogonal and complete in 

space  2 0,L c  with weight. 
2z 
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Now consider the problem {(7),(8)} at m   in the region 1 , i.e., consider the 

following problem: 

  10, , ,xx yy mw w w x y                                     (11) 

   , 0, 0,1/ 2 .w x x x                                              (12) 

The solution of this problem is found in the form 

     ,w x y X Y  , where 
2 2 2 2, /x y x                        (13) 

Then, with respect to the functions  X  and  Y   we obtain the following 

conditions ,  0 0X   lim Y





   and equations 

     2 2 0, 0;mX X X              
 

                        (14) 

         
1

1 1/ 2 0, 1
4

Y Y Y              ,                      (15) 

where R   is the separation  . 

Solutions of equation (14) satisfying the condition  0 0X  , exist at 0   and 

they (with accuracy to a constant multiplier) are of the form [17] 

   / , ,mX I c m N                                          (16) 

Where   , and  lI x  is the Bessel function of an imaginary argument of 

order l  [17]. 

(15) is a hypergeometric Gaussian equation [18]. Its general solution is defined by 

the formula [18] 

   / 2
1 / 2,1/ 2 / 2,1 ;1/Y c F          

 / 2
2 / 2,1 / 2,1 ;1/c F       ,                                 (17) 

where 1 2,c c are arbitrary constants. 

0   it sincefollows from (17) that in order to obtain the function bounded at 

   , we need to put 2 0c   in the formula , as a result of which, we get 

   / 2
1 / 2,1/ 2 / 2,1 ;1/Y c F        .                        (18) 

Consequently, continuous and nontrivial in 1  solution of the problem {(11),(12)}, 

according to (13), (16) and (18), are defined by the equations 

      / 2
1, / 2, 1 / 2,1 ;1/ /m mw x y c F I c

          , 1 0,c m N  .   

(19) 

Hence we find 
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1
0

1
1

0

lim , 2 / , 0,1 ;

lim , 2 / , 0,1 ,

m m m
y

m m m
y

x w x y c I x c x

x w x y c x I x c x
y







 

  

 



  



   

 

  


            (20) 

Where  z   is the Euler gamma function [18]. 

Now consider the problem {(7),(8)} at m   in the region 0 , i.e., consider the 

following problem: 

  00, , ,xx yy mw w w x y                                     (21) 

 0, 0, (0,1).w y y                                               (22) 

Dividing the variables by formula 

     ,w x y Q S  ,                                             (23) 

where  2 2 , /x y arctg y x     , from equation (21) and conditions 

 0w C  , (22), we obtain the following problems: 

         
22 / 0, 0,1 ,mQ Q c Q              

 
               (24) 

 0 ;Q                                                         (25) 

     0, 0, / 2 ,S S                                              (26) 

 / 2 0S   ,                                                     (27) 

where R  is the separation constant. 

We first study the problems {(24),(25)}. The general solution of equation (24) is 

defined in the form [17] 

     3 4/ / , [0,1],m m mQ c I c c K c                              (28) 

here ,    3c  and 4c  are arbitrary constants,  lK x is a Macdonald function 

of order l  [17] 

It follows from (28) that solutions of equation (24), satisfying condition (25), exist 

0  at and they are defined by equations 

   3 / , 0, .m mQ c I c m N                                   (29) 

Now, let us study the problem {(26),(27)}. The general solution of equation (26) is 

     5 6cos sinS c c    ,                                  (30) 

where . 5c and 6c are arbitrary constants. 

Satisfying function (30) with condition (27), we obtain  6 3 5c k c  , where 

   3 / 2k ctg   . Substituting  6 3 5c k c  into (30) and assuming 5 1c    (this 

does not violate generality), we have 

       cos / 2 sinS ctg     .                           (31) 
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Based on (23), (29) and (31), we conclude that the continuous and nontrivial in 

0 solution of the problem {(21),(22)}, have the form 

         3, / cos / 2 sinm mw x y c I c ctg          ,  3 0,c m N    (32) 

Hence, by direct calculation, we find 

       

         

3
0

1
3

0

lim , / , 0,1 ;

lim , / 2 / , 0,1 .

m m m
y

m m m
y

x w x y c I x c x

x w x y c ctg x I x c x
y





 

   

 



  



   

 

   


       (33) 

Then ,based on      , , ,U x y z w x y Z z  and the notation introduced, the 

following equations follow from the conditions and     , ,U x y z C   and (6): 

     

     

, 0,1 ,

, 0,1 .

m m

m m

x x x

x x x

 

 

 

 

  


 

                                         (34) 

Substituting (20) and (33) into (34) and assuming    , we have a homogeneous 

system of equations with respect to 1c  and  3c : 

1 3

1 3

2 0,
2

2 0.

c ctg c

c c






 


  

                                         (35) 

From system (35), we find 1
2

ctg


  . Writing out the solutions of this equation 

and taking into account the condition 0   we find 

2 1/ 2,n n n N    .                                           (36) 

Based on (36), the numbers
2 ,n n n N    are the eigenvalues of problems {(15), 

 lim Y





  } and {(26),(27)}. 

Note that at n   the function  S  , defined by the equality (31), will be 

written in the form 

 
1

2 sin 2
2 4

nS n


 
  

    
  

.                                       (37) 

In [19], it was proved that the system of eigenfunctions (37) forms a basis in the 

space  2 0, / 2L  . 

Taking into account the above proven and equality (19), (32), n    , we 

conclude that the functions 
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3 1 0
2

2

/ 2

3 1 1
2

2

1
2 sin 2 / , ( , ) ,

2 4
,

1 1 1 1 1
2 , ,2 ; , , ,

4 4 2

n

n

m
n

nm

m

n

c n I c x y

w x y

c F n n n I x y
c





  

 

 







   
     

  
 

     
        

    

  

(38) 

are continuous and nontrivial in  solving of the problem {(7),(8)}. 

Then, the functions 

     , , , , ,nm nm mU x y z w x y Z z n m N  ,                             (39) 

where  mZ z  and  ,nmw x y  are the functions defined by equalities (10) and (38) 

are continuous and nontrivial in   solutions of equation (1) satisfying conditions (4)-(5). 

 

3. Singularity of the solution of the problem T 

 

Let    , , , ,U x y z V z    solve the problem T in the domain 0 and satisfy the 

condition 

   ,0, ,0nV z V z     ,                                        (40) 

where , , z    are the cylindrical coordinates, realted to Cartesian coordinates by 

the equations ,
2 2x y     /arctg y x    z z . 

In these coordinates, equations (1) and condition (3) are written in the form 

 
2

1 1 2
0, , ,zz zV V V V V z

z
  


 


      ;                     (41) 

   1, , ,V z f z  ,    0, / 2 , 0,z c    ,                         (42) 

where         , , : 0,1 , 0, / 2 , 0,z z c           

   , cos ,sin ,f z F z   . 

Using  , ,V z   and eigenfunctions (10), (37), let us compose the following 

function: 

       
/ 2

2

0 0

, , , ,

c

nm m n md V z S z Z z d dz n m N


        ,             (43) 

Where  
2

3/ 22m md cJ  
    . 

Based on (43), we introduce the functions 

       
2 1

1 2

2 1

/ 2

2, , ,

c

nm m n md V z S z Z z d dz

  
  

 

     

 

                    (44) 
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where 1  and 2  are sufficiently small positive numbers. 

Obviously,    1 2

1 2, 0
lim nm nm

 

 
   


 . 

From (44), we find  5 6

2 1
nm
  

  

  
    

: 

       
1 2

1 2

1 2

/ 22 2
21 1

, ,

c

nm m n md V z S z Z z d dz

  
  

 

     
     

 
      

              
 

. 

Taking into account equations (41), from the latter we have 

     
2 1

1 2

2 1

/ 22
2

2

1
c

m
nm n m

d
V S d z Z z dz

  
  



 

   
   

    
            

   

   
1 2

1 2

/ 2

22
c

m zz z m nd V V z Z z dz S d
z

  


 


 

  
 

   
  
 

  . 

Applying the rule integration by parts from the last one, we obtain 

      
2

1
1 2

1
2

2 / 2

2

1
c

m
nm n n

d
V S VS


  

 


 


   
   


 



   
             

  

     
1

1

/ 2

2, ,n n mV z S d z Z z dz

 




    

 


 


  

        
1

2

2
1

/ 2

2, , , ,
z c

m z m m
z

d V z Z z V z Z z z

 







   


 




     


  

       
2

2

2 2/ , ,

c

m m nc V z z Z z dz S d








    

 


 


 .                          (45) 

Hence, passing to the limit at , 1 0  2 0   and considering (2), (4), (5), (27), 

(40) and  boundary conditions of the problems (9), as well as the notation (43), we obtain 

the equality 

     
2

4 1
0, (0,1)n

nm nm m nm


       

 

 
      

 
. 

Hence ,the function  nm  satisfies the differential equation (24) at . n  . 

Moreover ,due to the boundary conditions (3), it follows from (43) that the function 

 nm   satisfies the following boundary conditions: 

 1nm nmf  ,                                                 (46) 
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where 

     
/ 2

2

0 0

,

c

nm m n mf d f z S z Z z d dz


     .                      (47) 

Consequently, the function  nm  , defined by equality (43), satisfies equation 

(24) at n   and conditions (25), (46). Therefore,by subjecting the general solution 

(28) of equation (24) to these conditions, we find the coefficients 3c  and 4c  : 

 3 / /
nnm mc f I c  ,  4 0c  . 

Substituting these values in (28), we unambiguously find the function  nm   

  ( / ) ( / )
n nnm m nm mI c f I c      .                              (48) 

Now we can prove the following theorem. 

Theorem 1: If there exists a solution to the problem T when condition (40) is 

satisfied, then it is singular. 

Proof. For  this, purpose it suffices to prove that the homogeneous problem T, has 

only a trivial solution. Let  , 0f z   .Then 0nmf   for all ,n m N . By virtue of this 

equality, it follows from (48) and (43) that      
/ 2

2

0 0

, , 0

c

n mV z S z Z z d dz


      . 

Hence, by virtue of the complenteness of the system of functions (10) with weight 
2z 

 in 

the  space  2 0,L c  and    , ,V z C     it follows that,    
/ 2

0

, , 0nV z S d



      

n N . Given the completeness of the system of functions (37) in the space  2 0, / 2L 

and    , ,V z C    , it follows from the last equality that  , , 0V z   in   . 

Using this equality and    , , , ,U x y z V z  , it is easy to see that 

       , 0, 0, ,0, 0, 0,1 , 0, .yU x z U x z x z c      

Then, by virtue of    , ,U x y z C  , the following  equations are true 

       , 0, 0, , 0, 0, 0,1 , 0, .yU x z U x z x z c                         (49) 

It follows from the results of [20] that the solution of Eq . 

2
0xx yy zz zU U U U

z


    ,   1, ,x y z   

satisfying conditions (49) is identically zero, i.e.,     1, , 0, , ,U x y z x y z   . 

Theorem 1 is proved. 

4. Construction and justification of the solution of the problem T 
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Substituting the values  3 / /
nnm mc f I c   to equality (38), and then the 

obtained function in (39), we find partial solutions of the problem T in the form of 

 
   

   

0

1

, , , , , , , ,
, ,

, , , , , , , ,

nm

nm

nm

U x y z x y z n m N
U x y z

U x y z x y z n m N





  
 

 

 

where 

          0, , , , ,nm m nm nU x y z Z z S x y z     ,                      (50) 

          1, , 2 , , ,n
nm m nm nU x y z Z z X Y x y z

     ,                  (51) 

      2 2
2 1/ 2 2 1/ 2/ / / ,nm n m nm n mX I c f I c x y        ,            (52) 

     
1/ 4 2 21/ 1/ 4, 1/ 4,2 1/ 2;1/ , /

n

nY F n n n x    


     ,          (53) 

and,  mZ z  nS   nmf  and   nm   are determined by the equations (10), (37), 

(47) and (48) respectively. 

Theorem 2.  If  ,f z  satisfies the following conditions: 

I.    4,5
,, zf z C   , where   , : (0, / 2), (0, )z z c      ; 

II.  
0

, 0
j

j
f z












 ,   

/ 2

, 0
j

j
f z

 










0,3j  ; 

III.  
0

, 0
j

j z
f z

z








,    , 0

j

j z c
f z

z








0,4j  . 

Then the solution of the problem T exists and is determined by the formula 

 

   

   

0
1 1

1
1 1

, , , , , ,

, ,

, , , , , ,

nm
n m

nm
n m

U x y z x y z

U x y z

U x y z x y z

 


 

 


 





 
 


 

 

                       (54) 

where ,  , ,nmU x y z
  , ,nmU x y z

 are functions defined by formulas (50) and (51). 

Before proceeding to the proof of this theorem, let us prove some lemmas. 

Lemma 1. If (0,1/ 2)   , then the  following estimates are valid with respect to 

the functions  mZ z , defined by equations (10), at  0,z c  and sufficiently large m : 

  1 2 1/ 2
5 ( )m mZ z c z    ,                                       (55) 

 2 1/ 2
6 ( )m mz Z z c                                             (56) 

  1 2 5 / 2
1/ 2 7 ( )z

m mB Z z c z  
  
  ,                             (57) 
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where , 5,7jc j    are positive constants, 
2

2

2 1y
q

q
B

y yy

  
 


–Bessel operator 

[21]. 

Proof: Let us rewrite the function  mZ z  in the from 

 
 

 
   

1/ 2
1/ 21 2

1/ 2

2
/

3/ 2
m m m

c
Z z z J z c




 






 

,                 (58) 

where  J z  is the Bessel-Clifford function [22]: 

      
 
 

2

0

/ 4
1 / 2

1 !

j

j j

z
J z z J z

j


 









   


 . 

The function  J z  is even and infinitely differentiable. Moreover,the equality 

 0 1J   the inequality   1J z   at 1/ 2    are valid.Considering this and 

1/ 2 0  , from equality (58), we get an estimate (55). 

Now, consider the function  2 1/ 2
1/ 2 ( / )m

m mz Z z z J z c
c

 





   . Let us rewrite 

this function in the form 

     
1/ 22 1/ 2

1/ 2/m mz Z z c J
 

  
 

   ,                  (59) 

where /mz c  . The function  1/ 2
1/ 2J  

   is bounded at the point 0   

and continuous at [0, )   . Moreover, by virtue of the asymptotic formula of the 

Bessel function: 

 
1/ 2

2
cos

2 4
J

 
 



   
    

  
,                             (60) 

for sufficiently large  , the estimate  1/ 2
1/ 2 6J c 

  
   , where 

6 0c const   is valid. Considering these properties of the function  1/ 2
1/ 2J  

   , 

it follows from (60) that for sufficiently large   the inequality 

       
1/ 2 1/ 2 1/ 22

6 6 6/ /m m m mz Z z c c c c z c
     


    , i.e., the estimate (56) 

is valid. 

It is known that the function  mZ z  satisfies equation from (9) at  
2

/m m c   . 

It follows that      
2

1/ 2 /z
m m mB Z z c Z z    . Then, by virtue of evaluation (55), 

evaluation (57) is valid. Lemma 1 is proven. 
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