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Abstract: Quantum dots (QDs) have emerged as promising candidates for 

applications in lighting, energy, and bio-fluorescent detection due to their unique size-

dependent properties. The photo physics of QDs is primarily governed by the size of 

the nanoparticles, although the influence of ligand schemes and shells has been 

recognized as significant. This chapter provides a comprehensive overview of different 

QD models, beginning with the fundamental "particle-in-a-box" model and progressing 

to more advanced and intricate models employed for quantifying QD photo physics. 

The discussion delves into the intricate interplay between QD size, ligand 

configurations, and shell architectures, elucidating their effects on the optical 

properties of QDs. By understanding these models, researchers can gain insights into 

the design and optimization of QDs for various applications, thus paving the way for 

enhanced performance and efficiency in lighting, energy generation, and bio-

fluorescent detection systems. 
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1. Introduction. 

The size dependent properties of quantum dots make them great candidates for 

applications in lighting, energy, and bio‐fluorescent detection. On the most basic level, 

the size of the nanoparticles plays the largest role in their photo physics, yet various 

ligand schemes and shells have been shown to have a considerable impact on their 

photophysics. This chapter will discuss various quantum dot models, starting with the 

most basic, “a particle‐in‐a‐box”, and then moving on to the more sophisticated and 

technical models that are used to quantify quantum dot photophysics. 

Particle‐in‐a‐Box 
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Figure 1. Model of a particle‐in‐a‐box with infinite potentials outside the box and 

zero potential inside. 

The particle‐in‐a‐box model is one of the simplest applications of the Schrödinger 

equation, but it can portray one the most import aspects of quantum dot physics; the 

size dependent band gap. In this model, one assumes that an electron is bound to its 

nucleus, trapped inside a box of length  . An infinite potential       exists outside 

of the box while there is no potential       inside of the box (Figure 1). The 

Schrödinger equation for this example can be written as 
   

   
 

  

  
         (1) 

One can then assume that the wave function takes the general form of 

                          , where    
  

  
     . 

2. Materials and methods 

Determination of the constants   and  can be achieved by application of the 

boundary conditions. At     or     the wave function must be zero      . 

Therefore,                       which simplifies to     . In the same fashion, 

at    , the wavefunction must also be zero, and therefore               

            . Using      and Euler’s formula this can be simplified to   

          , where 

we find that    has infinitely many discrete solutions as 

         ,l,2,3    (2) 

  
  

 
               (3) 

Substituting    
  

  
      into Eq. 3 gives discrete energy values of 

   
    

    
              (4) 

where the wave function is 

           
  

 
             (5) 

Figure 2.    plots the discrete wavefunctions from Eq. 5 while Figure 3.    plots 

the discrete energy levels from Eq.4. 
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Figure 2. The solution to the particle‐in‐a‐box model results in      simple 

sinusoidal wavefunction and (b) discrete energy levels. 

From this model, we see two intriguing properties. Firstly, the discretization of 

the energy levels shows that there are certain energies that are forbidden to the 

electron. Secondly, we see that there is a quadratic relation between the energy and 

the size of the box (Eq.4). This can be applied to a quantum dot, where the band gap 

quadratic ally increases as the size of the Nano crystal decreases. 

 

3. Results and discussion 

Although the previous model does a reasonable job of identifying the quadratic 

size dependence of the band gap in quantum dots, the discrete nature of the energy 

levels is more suitable for atomic electronic structure. The band structure of quantum 

dots can be more appropriately described using the Kronig‐Penney model, which 

models an electron in a periodic potential, much like it would experience in a 

crystalline solid (Figure 3). Now in this case the potential is a constant value,     , 

and there are two diff erent regions for the Schrödinger equation to be applied. The 

first periodic region has a width of   and is blue in Figure 3, while the second region is 

the space in between the potentials with a width of  . The Schrödinger equation for 

these two regions are given in Eq.6 and Eq. 7, respectively, where    
  

  
      

and    
  

  
      . 

   

   
 

  

  
              (6) 

   

   
 

  

  
         (7) 

Following a procedure similar to that in Chapter 4, Section 4 of the text Electronic 

Properties of Materials” by Humme1 and using Bloch functions of the form 

                   , one can arrive at 

 
         

  
                        (8) 

where 

  
     

  
.     (9) 
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Figure 3. Periodic potential model. 

In this case one again finds discrete solutions to   , as in the previous example, 

and in order to better understand Eq. 8 we plot the left ‐hand side as a function of    

in Figure 3.     Now, because                we know that for Eq. 8 to hold, 

 
         

  
           must also be between    and 1. The possible values of    are 

colored blue in Figure 3.    and the possible energy levels according to Eq. 6 and Eq. 7 

are plotted in Figure 3.   . In a similar fashion to the discrete energy levels from the 

particle‐in‐a‐box model, one can see that the energy bands increase in a quadratic 

fashion. Though, unlike the particle‐in‐a‐box, energy bands as opposed to energy levels 

are now present, which more accurately describes the electronic structure in a 

quantum dot. 

 

Figure 4. (a) The function  
         

  
           versus   , where any value of this 

function that is between    and 1 is plotted in blue. (b) Energy bands form from this 

periodic potential model. 

In 1929, three years after the derivation of the Schrödinger equation, Paul Dirac 

noted that, “The general theory of quantum mechanics is now almost complete . The 

underlying physical laws necessary for the mathematical theory of a large part of 

physics and the whole of chemistry are thus completely known, and the difficulty is 

only that the exact application of these laws lead to equations much too complicated to 

be soluble. It therefore becomes desirable that the approximated practical methods of 

applying quantum mechanics should be developed. This is stated because the previous 
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examples show examples of quantum mechanics being applied to a system with an 

exact solution as the result. Although this is useful for qualitative analysis and 

understanding, very few practical cases, as Dirac pointed out, have such simple 

solutions. Simply increasing the number of electrons from one to two greatly increases 

the complexity of the calculation. This section will briefly examine the modeling of 

helium‐like atoms using simple approximations of the wave function to discuss the 

more complex methods used to computationally determine the electronic structure. 

 
Figure 5. The coordinates of a helium atom with the nucleus at the origin. 

Increasing the number of electrons surrounding the nucleus of an atom greatly 

increases the complexity of the Hamiltonian due to the increased number of electron‐

nucleus interactions and electron‐electron interactions, making these calculations 

impossible to solve analytically. In the case of helium like atoms with a Hamiltonian of 

 ̂   
  

   
   

    
   

 

    
(

   

  
 

   

  
 

  

   
) where       , and     correspond to the 

distances between electrons and the nucleus per Figure 5, a few approximations can 

be taken to calculate the wave functions and corresponding energies levels. Such 

approximations include ignoring the electron‐electron repulsion term, 
  

       
, and 

approximating the wave function as the product of two    orbitals, 

  
 

    
 

 

  
     

      
 

 

     
 

  
             without concern for spin. These 

approximations can give reasonable calculations to the total energy of the helium atom 

at         when compared to the exact value of        . The approximation 

accuracy can be increased by adding higher order hydrogen orbitals such as the       , 

and    orbital or by using the variational method. 

4. Conclusions 

 
Figure 6. Algorithmic flow chart for the Hartree‐Fock Method. 
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For systems with more than two electrons, the approximations used for 

calculating the total energy in the heliumlike atom also become too impractical. 

Because of this, the self‐consistent field (SCF) method was introduced by Hartre.  In 

this method an effective Hamiltonian,  ̂, is developed for each electron,  , in the 

system. This electron only feels an effective averaged potential,  ̂, from the other 

electrons resulting in a Hamiltonian as such:  ̂   
  

   
  

  
 

    

   

  
  ̂  ̂  The 

Schrödinger equation for an  ‐electron atom can now be separated into   one‐electron 

equations which are solved using the SCF method outlined in Figure 3.6. First an 

approximation of the electronic wave function is made. This wave function is then 

used to calculate the effective potential where this effective potential is then used to 

calculate a new wave function. If the difference between the eigenenergies of the new 

and old wave functions is below the given tolerance, the new wavefunction and its 

corresponding eigenenergies give the desired output. This is the basis for the Hartree‐

Fock (HF) method. For a more accurate description of the electronic structure of a 

system, more advanced computational methods that include exchange correlation 

functions can be used, such as DFT. DFT builds upon the HF method by 

including an approximate treatment of the correlated motions of electrons and 

has been proven to be very practical in calculating the electronic structure of 

molecules and materials. In the chapters to follow, many of the experimental data is 

corroborated with computational simulations using DFT. 

 

REFERENCES: 

 

1. Awschalom, D. D., L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta (2013). 

"Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in 

Semiconductors". Science 339,1174-1179 (cited on page 8). 

2. J. M. Martinis (2013). "Coherent Josephson Qubit Suitable for Scalable 

Quantum Integrated Circuits". Phys. Rev. Lett. I l l , 080502 (cited on page 83). 

3. Bennett, C. H. and G. Brassard (1984). "Quantum cryptography: Public key 

distribution and coin tossing". Proc. IEEE Int. Conf. Computers, Systems and Signal 

Processing, 175-179 (cited on page 12). 

4. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret (2010). "Phase-

preserving amplification near the quantum limit with a Josephson ring modulator". 

Nature 465, 64-68 (cited on page 64). 

5. Arabboyevich, M. I. (2023). MAGNIT MAYDONDAGI ELEKTRONLAR 

HARAKATI, LANDAU KVANTLASHISH SHARTLARI. SUSTAINABILITY OF EDUCATION, 

SOCIO-ECONOMIC SCIENCE THEORY, 1(6), 20-24. 

6. Arabboyevich, M. I., & Alijon o’g’li, M. A. (2023). IDEAL GAZLARDA KVANT 

STATISTIKASI TAHLILI. PEDAGOGICAL SCIENCES AND TEACHING METHODS, 2(20), 

235-237. 



O‘ZBEKISTONDA FANLARARO INNOVATSIYALAR  VA 
           20-SON              ILMIY TADQIQOTLAR JURNALI                       20.06.2023 

 

7. Muminov, I. A., & Muminova, M. (2023). QATTIQ JISMLARNING KRISTALL 

PANJARALARI. Oriental renaissance: Innovative, educational, natural and social 

sciences, 3(3), 1314-1317. 

8. Arabboyevich, M. I., & Nabijon o‘g, S. U. B. (2022). QATTIQ JISM 

KRISTALLARINI O’STIRISH NAZARIYASI. Scientific Impulse, 1(3), 696-698. 

9. Mo’minov, I., & Jasurbek, T. (2022). NАZАRIY MЕХАNIKАNING 

TARIXI. IJODKOR O'QITUVCHI, 2(19), 601-605. 

10. Ахмедов, Б. Б., Муминов, И. А., & Хошимов, Х.А.У. (2022). РАЗМЕРНОЕ 

КВАНТОВАНИЕ В ПОТЕНЦИАЛЬНОЙ ЯМЕ ПРЯМОУГОЛЬНОЙ ФОРМЫ. Oriental 

renaissance: Innovative, educational, natural and social sciences, 2(Special Issue 4-2), 

1032-1036. 

11. Muminov, I. A., Axmedov, B.B.,&Maxmudov, A. A. O. G. L. (2022). 

YARIMO’TKAZGICH ASOSIDAGI TURLI STRUKTURALI NANOTRUBKALAR. Oriental 

renaissance: Innovative, educational, natural and social sciences, 2(4), 517-523. 

12. Baxromovich, A.B.,& Alijon o’g’li, M.A.(2022). YARIMO’TKAZGICH 

ASOSIDAGI TURLI STRUKTURALI NANOTRUBKALAR Muminov Islomjon 

Arabboyevich. 

13. Muminov, I. A., Akhmedova, S.Y.K., Sobirjonova, D.A.K., & Khomidjonov, D. 

K. U. (2021). HETEROSTRUCTURES OF ANTIMONIDE-BASED 

SEMICONDUCTORS. Oriental renaissance: Innovative, educational, natural and social 

sciences, 1(11), 952-959. 

14. Rasulov, R. Y., Akhmedov, B. B., Muminov, I. A., & Umarov, B. B. (2021). 

Crystals with tetrahedral and hexagonal lattices. Fergana. Classic.-2021. 

15. Расулов, В. Р., Расулов, Р. Я., Муминов, И. А., Эшболтаев, И. М., & 

Кучкаров, М. (2021). МЕЖДУЗОННОЕ ТРЕХФОТОННОЕ ПОГЛОЩЕНИЕ В INSB. 

16. Ахмедов, Б. Б., & Муминов, И. А. (2021). УРАВНЕНИЯ ШРЕДИНГЕРА 

ДЛЯ ДВУМЕРНОГО ВОЛНОВОГО ВЕКТОРА. EDITOR COORDINATOR, 537. 

17. Rasulov, V. R., Akhmedov, B. B., & Muminov, I. A. (2021). Interband one-

and two-photon absorption of polarized light in narrow-gap crystals. Scientific-

technical journal, 4(1), 28-31. 

18. Yavkachovich, R. R., Ogli, M. A. A., Umidaxon, R., Makhliyo, M., & 

Arabboyevich, M. I. (2019). Agency of surface recombination on volt-ampere 

characteristic of the diode with double injection. European science review, (11-12), 70-

73. 

 

  


