

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI

УДК:681.5.004.451.25

КОНТРОЛЬ И ДИАГНОСТИКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ΗΑСОСНОГО ΑΓΡΕΓΑΤΑ.

Ниғматов Азизжон Махкамович

старший преподаватель,

Абдукадирова Камила Бахадировна

студентка

Национальный исследовательский университет при "ТИИИМСХ"

Аннотация: В данной статье изучена методика диагностики технических средств системы управления и защиты асинхронного электродвигателя, была создана принципиальная и структурная схема и приемы поиска неисправностей. В данной работе исследуется система управления асинхронным двигателем с возможностью реверса.

Ключевые слова: автоматика, технические средства, информация, цикл, управления, процесс, контроль, объект, неисправность.

Введение. Современное автоматизированное производство характеризуется возрастанием сложности применяемых технических средств, расширением их функциональных возможностей и повышением стоимости. В этих условиях поддержание работоспособного состояния аппаратных средств систем автоматизации и управления - одна из основных задач технической эксплуатации, которая представляет собой многоуровневый и многофакторный процесс, требующий качественного инженерно-технического обеспечения. В процессе технической эксплуатации осуществляется управление состоянием системы, для реализации которого необходимо информация о данном состоянии. Техническое диагностирование, как процесс получения информации о состоянии технических средств с определенной точностью, является неотъемлемой частью жизненного цикла системы управления. Контроль и диагностика технических средств (ТС) систем автоматизации и управления проводится для оценки их технического состояния с указанием необходимости места, вида и причин возникновения дефектов [2]. Под техническим состоянием ТС понимается совокупность их внутренних свойств, подверженных изменениям при производстве И эксплуатации, характеризующих соответствие или несоответствие качества ТС требованиям, установленным эксплуатационно-технической документацией. Техническое состояние ТС характеризуется определенными признаками, которые в свою очередь зависят от количественных и качественных характеристик свойств отдельных устройств. Внутренние свойства ТС определяются совокупностью свойств взаимосвязанных и взаимозависимых функциональных элементов,

OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI

которые входят в состав системы управления. Общее число состояний, в которых может находиться система управления, определяется функциональных элементов и связей между ними.

Постановка задач. Переходы ТС из одного технического состояния в другое являются случайными событиями. Поэтому любое состояние ТС до проведения контроля и диагностики обладает некоторой неопределенностью, раскрытия которой необходимо осуществить диагностирование. Результатом контроля и диагностики должно быть заключение о техническом состоянии ТС системы управления.

При решении задач контроля и диагностики искомыми являются случайные технические состояния элементов системы, функционирования считаются заданными. При этом предполагается, что контролируемые TC могут находиться в конечном множестве S состояний. Это множество можно разделить на два подмножества S_u исправных и S_H неисправных состояний. Переход ТС из одного состояния в другое, как правило, объясняется возникновением в ней неисправности.

Подмножество S_u исправных состояний включает в себя все состояния, которые позволяют ТС выполнять возложенные на них функции, т.е. состояния работоспособности. Переход из одного состояния в другое в подмножестве S_u может объясняться возникновением неисправностей в ТС, которые, однако, не приводят к потере работоспособности, т.е. не вызывают перехода ТС по техническому состоянию в подмножество S_{H} неисправных состояний. Для TC систем управления технологическими объектами подмножество S_u часто единственное состояние, соответствующее включает исправности элементов системы.

Подмножество S_H неисправных состояний включает в себя все состояния, соответствующие возникновению в ТС неисправности, приводящей к потере их подмножества работоспособности. Мощность определяется неисправностей, которые, можно обнаружить по соответствующим признакам. Такая классификация технических состояний ТС позволяет разделить процесс контроля и диагностики на два этапа.

На первом этапе устанавливается принадлежность ТС по состоянию к одному из подмножеств S_u или S_H . Эту процедуру называют проверкой исправности ТС. Анализ состояний ТС в подмножестве S_u позволяет установить характер изменения степени их работоспособности и в ряде предсказать момент перехода состояния системы управления в подмножество S_{H} , а следовательно, осуществить прогнозирование состояния TC. На втором этапе определяют, в каком из состояний подмножества S_{H} находится контролируемые ТС. Этот этап может быть назван обнаружением возникшей неисправности.

OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA 19-SON ILMIY TADQIQOTLAR JURNALI 20.05.2023

Решение задач. Процесс диагностирования представляет собой многократную подачу на объект диагностирования определенных воздействий, многократное измерение и анализ ответов (реакций) объекта на эти воздействия.

зависимости OT способа подачи на объект диагностирования проверочных воздействий различают системы тестового и функционального диагностирования. В данной лабораторной работе используется система функционального диагностирования. Системы функционального диагностирования используют в качестве проверочных воздействий рабочие сигналы. Эти воздействия соответствуют рабочим функционирования объекта диагностирования и не могут выбираться произвольно. Системы функционального диагностирования применяются, как правило, в процессе эксплуатации системы управления.

При поиске неисправностей систему управления обычно представляют в виде функциональной модели или функционально-логической схемы. Функциональная модель отличается от структурной схемы выбором первичных функциональных элементов. Под функциональным элементом понимают часть объекта диагностирования (узел, блок, устройство, отдельный элемент), которая может находиться только в одном из двух состояний: исправна или неисправна.

При построении структурной схемы исходят из закономерностей рабочих процессов в диагностируемых ТС, в то время как при построении функциональной модели исходят из заданной точности локализации неисправностей с учетом конструктивных особенностей ТС.

При построении функциональных моделей необходимо руководствоваться следующими правилами:

в каждом функциональном элементе должны быть известны значения (номинальные, допуски) входных и выходных параметров, их функциональная зависимость и способ контроля;

при выходе из допустимых пределов хотя бы одного из входных сигналов появляется выходной сигнал, который также выходит из допустимых пределов;

функциональный элемент модели объекта диагностирования считается неисправным, если при всех входных сигналах, лежащих в допустимых пределах, на его выходе появляется сигнал, значения которого выходят из допустимых пределов; значения внешних входных сигналов всегда находятся в пределахдопусков;

если выходной сигнал *i*-го функционального элемента является входным для *j*-го функционального элемента, то значения этих сигналов совпадают; линии связи между функциональными элементами абсолютно надежны;

любой первичный функциональный элемент модели может иметь только один выходной сигнал при произвольном конечном числе входных сигналов.

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA 9-SON ILMIY TADQIQOTLAR JURNALI 20.05.2023

Функциональная модель выполняется в виде графической схемы, на которой каждый функциональный элемент обозначается прямоугольником с некоторым количеством входных стрелок (входных сигналов) и одной выходной стрелкой (выходным сигналом). Выход любого функционального элемента можно соединять с любым числом входов, в то время как вход любого элемента может быть соединен только с одним выходом.

Входы, которые не соединены ни с одним выходом, называются внешними. Они передают внешние воздействия на диагностируемый объект. Внешние воздействия обозначаются X_{ij} , где i - номер функциональногоэлемента, j - номер входа этого элемента. Выходы функциональных элементов обозначаются Z_i , где і - номер функционального элемента. Функциональная модель технических средств системы управления представлена на рисунке 2. На данном рисунке обозначены следующие функциональные элементы системы и внешние воздействия: 1 – кнопка управления «Пуск»; 2 – кнопка управления «Стоп»; 3 – обмотка магнитного пускателя; 4 – вспомогательные контакты (блок-контакты) 5 – силовые контакты магнитного пускателя; 6 – магнитного пускателя; световые индикаторы; 7 - воспринимающая часть теплового реле; 8 асинхронный электродвигатель; 8 – размыкающие контакты теплового реле. X_{11} – внешнее воздействие «Пуск»; X_{21} – внешнее воздействие «Стоп» X_{31} – внешнее воздействие «Силовая сеть» При построении алгоритмов (программ) поиска неисправностей различают последовательный, комбинационный комбинационно- последовательный методы использования диагностической информации.

При последовательном методе информация о техническом состоянии функциональных элементов диагностируемой аппаратуры отдельных вводится в систему контроля И диагностики, В числе TOM автоматизированные системы контроля, И логически обрабатывается последовательно. При последовательном использования методе диагностической информации программа поиска неисправностей может быть жесткой или гибкой. Жесткой называется программа поиска, когда выходные параметры функциональных элементов контролируются в строгой, заранее определенной последовательности независимо от результатов их контроля. Гибкой называется программа, при использовании которой содержание и последовательности проведения последующих проверок зависят от результатов предыдущей. При комбинационном методе использования диагностической информации результаты контроля логически обрабатываются только после накопления информации о всех параметрах диагностируемой аппаратуры.

Комбинационно-последовательный метод предусматривает последовательную обработку информации, получаемой в результате одновременного контроля нескольких из всей совокупности контролируемых параметров диагностируемой аппаратуры.

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI 19-son

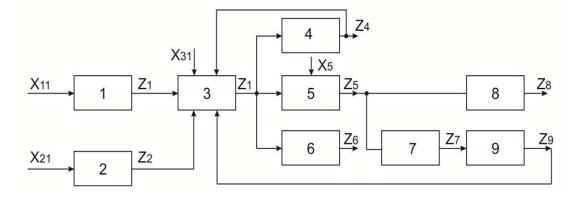


Рис.2. Функциональная модель технических средств системы управления.

Как правило, для всех физических параметров ТС известны допустимые пределы их изменения. Следовательно, контроль работоспособности будет состоять из контроля параметров, от которых зависят основные функции. Если какая-либо основная функция не выполняется, то возникает задача поиска неисправности. В этом случае параметр, значения которого вышли за границы допусков, следует считать функцией некоторых других параметров, которые являются физическими параметрами более мелких устройств, или смежных элементов. Продолжая конструктивных аналогичные рассуждения, составляется схема контроля работоспособности и поиска неисправностей. Рассмотрим составление алгоритма поиска неисправностей на примере технических средств системы управления и защиты трехфазного асинхронного электродвигателя. Основной функцией данной системы является обеспечение пуска и торможения электродвигателя. Эта функция выполняется, если при наличии напряжения в силовой сети с заданными параметрами изменяться состояние силового коммутационного устройства. В процессе контроля указанного состояния принимается решение об исправности или неисправности силового контура контура управления Последовательно контролируя сигналы контуров, диагностируя отдельные их участки, можно определить неисправное устройство. Схема (алгоритм) поиска неисправностей технических средств системы управления представлена на рисунке 3. На данном рисунке выходы функциональных элементов обозначены Z_{i} , где i - номер функционального элемента, решение об исправности i - го элемента системы P_i : P_0 – система исправна; P_1 – неисправны силовые контакты; P_2 – неисправна кнопка «Пуск»; P_3 – неисправна обмотка; P_4 – неисправна кнопка «Стоп»; P_5 – неисправна воспринимающая часть теплового реле; P_6 – неисправны вспомогательные контакты магнитного пускателя; P_7 размыкающие контакты теплового реле; P_8 – неисправны световые индикаторы.

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI 19-son

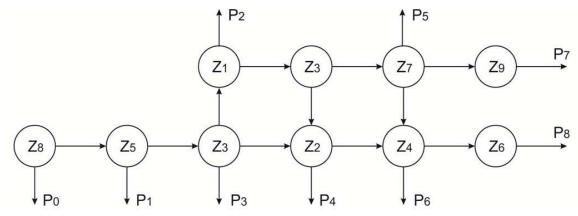


Рис.3. Схема поиска неисправностей.

В данной работе исследуется система управления асинхронным двигателем возможностью реверса [3]. Силовая часть схемы управления АД возможностью реверса представлена на рисунке 5. На рисунке 5 выделены элементы автоматического выключателя QF1 и контакторов КМ1 и КМ2.

Буквами и цифрами обозначены клеммы соответствующие обозначениям на лицевой панели. Схема контура управления асинхронным электродвигателем с возможностью реверса представлена на рисунке 6. На рисунке 6 выделены элементы контакторов КМ1 и КМ2.

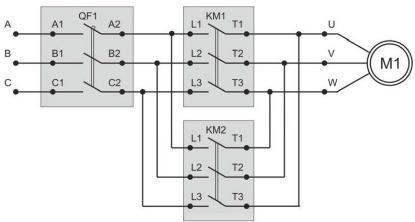


Рисунок 5 - Силовая схема управления асинхронным двигателем возможностью реверса.

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA 19-SON ILMIY TADQIQOTLAR JURNALI 20.05.2023

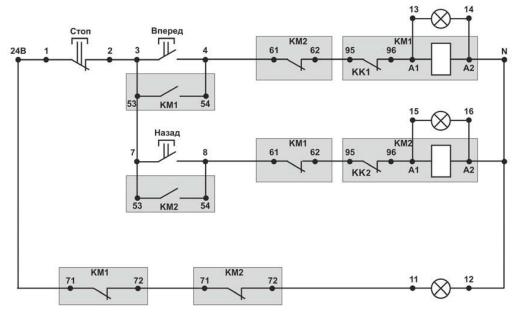


Рисунок 6 – Схема управления асинхронным двигателем с возможности реверса.

Вывод. В данной работе используется способ последовательного функционального анализа. При построении алгоритма способом последовательного функционального анализа предварительно определяются, исходя из назначения ТС системы управления, основные функции, характеризующие исправность диагностируемых средств.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

- 1 Леонов А.И., Дубровский Н.Ф. Основы технической эксплуатации радиоэлектронной аппаратуры. М.: Лениздат, 1991.– с.
- 2 Алиев И.И. Электрические аппараты: Справочник. М.:РадиоСофт, 2004.– 256 с.
- 3 Электрические и электронные аппараты: Учебник для вузов / Под ред. Ю.К.Розонова. М.:Информэлекто, 2001.– 412 с