

OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI

ОПУХОЛИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ: ВЗАИМОСВЯЗЬ С МИКРОЭЛЕМЕНТАМИ, ОЖИРЕНИЕМ И ИНСУЛИНОРЕЗИСТЕНТНОСТЬЮ

Базарова Сабина Зафаровна

студентка Самаркандского Государственного Медицинского Университета Рахмоналиева Мохижамол Ойбековна

студентка Самаркандского Государственного Медицинского Университета Джураева Зилола Арановна

Научный руководитель: Ассистент кафедры Эндокринологии СамГМУ

Аннотация: В последние годы отмечается рост распространенности узловых новообразований щитовидной железы (ЩЖ). Установлена роль внешних в ЩЖ, к числу факторов, запускающих онкогенез которых канцерогены, мутагены, оксидативный стресс. В настоящее время изучается роль нарушений микроэлементного состава организма, ожирения, высоких концентраций инсулина и инсулинорезистентности (ИР) в запуске сигнальных путей онкогенеза в клетках ЩЖ. В обзоре обсуждается роль дисбаланса микроэлементов, несбалансированного питания, ожирения и ИР в развитии опухолей ЩЖ. Авторами обсуждается положительное влияние метформина на функцию ЩЖ у пациентов с ИР и гипотиреозом, поскольку что метформин гидрохлорид (метформин) оказывать может онкопротективное действие. Предстоит дальнейшее изучение роли указанных групп препаратов в лечении и профилактике онкогенеза ЩЖ.

Ключевые слова: онкогенез, ожирение, инсулинорезистентность, метформин гидрохлорид (метформин).

ЖШ самый Введение: Известно. что рак распространенный злокачественный процесс эндокринной системы, его доля в общей структуре всех злокачественных новообразований эндокринной системы составляет до 90% [1,2]. В последние десятилетия отмечается рост распространенности избыточной массы тела и ожирения среди населения, что в большинстве случаев связано с избыточным поступлением питательных веществ и калорий а также несбалансированным поступлением микроэлементов с пищей. Ведутся поиски взаимосвязи ожирения, дисбаланса нутриентов и микроэлементов, поступающих с пищей, с развитием онкологических заболеваний, в том числе опухолей ЩЖ. Однако данный вопрос пока остается нерешенным и требует более детального изучения. Также до настоящего о ранней дифференциальной времени открыт вопрос диагностике доброкачественных и злокачественных опухолей ЩЖ, не изучена возможность доброкачественного прогрессирования узлового образования в злокачественный процесс и не разработана первичная профилактика рака

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA -SON ILMIY TADQIQOTLAR JURNALI 20.06.2022

ЩЖ. К настоящему времени ведущей концепцией онкогенеза ЩЖ является комплексное влияние канцерогенных и мутагенных факторов, оксидативного стресса, также обсуждается роль дисбаланса микроэлементов, несбалансированного питания, ожирения и инсулинорезистентности (ИР).

Роль микроэлементов в развитии опухолей ЩЖ

Предполагают, что одной из вероятных причин развития неоплазий ЩЖ является дефицит йода: при уменьшении содержания йода в тироцитах снижается уровень йодлактонов, блокирующих продукцию ростовых факторов, что приводит к гиперплазии и формированию узлов в ЩЖ [3]. На развитие и прогрессирование опухолей ЩЖ может влиять комплексный дисбаланс микроэлементов: селена, цинка, меди, железа и др [4, 5]. При пониженном потреблении селена возникает дефицит соединений селена, участвующих в защите клеток от окислительного стресса. Кроме того, селен входит в состав онкосупрессивного белка р53, блокирующего пролиферацию и стимулирующего ДНК и, при необратимых процессах, запускающего поврежденных клеток. Низкий уровень цинка сопровождается нарушением деления, дифференцировки, апоптоза клеток и дисбалансом защите в антиоксидантной путем нарушения работы фермента супероксиддисмутазы. Установлено, что цинк так же, как и селен, входит в состав онкосупрессивного белка р53. Показано, что присутствие цинка положительно влияет на функцию белка р53 в клетках злокачественной ЩЖ, что способствует поддержанию контроля над онкогенезом. опухоли мутацией *V600E* в гене *BRAF*, Избыток сопряжен с онкогенной меди запускающей онкогенез в ЩЖ по пути RAS/RAF/MEK. С другой стороны, медь входит в состав ферментов антиоксидантной защиты: цитохромоксидазы С, Си-Zn-супероксиддисмутазы, антиоксидантного белка 1, церулоплазмина [5]. Только при достаточном уровне меди организм защищен от развития опухолей ЩЖ. Железо играет ключевую роль в процессах пролиферации и роста клеток: входит в состав ферментов, участвующих в синтезе нуклеиновых кислот и процессах клеточного деления и энергетического обмена, а также в состав ферментов (пероксидазы, каталазы, цитохрома), защищающих от окислительного стресса.

Роль ожирения, инсулина и ИР в онкогенезе

Молекулярные механизмы, связывающие ожирение с развитием рака, сложны и до сих пор полностью не изучены. Высококалорийное питание и положительный энергетический баланс способствуют пролиферации клеток прогрессированию вследствие ИР. гиперинсулинемии опухоли и ее и повышения уровня инсулиноподобного фактора роста-1 (ИФР-1) [6]. ИР с нарушением передачи сигнала от инсулина к клетке неадекватной реакцией клеток на действие инсулина. Известно, что при висцеральном ожирении более высокие концентрации инсулина обладают

OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA 20.06.2022

ILMIY TADQIQOTLAR JURNALI

эффектами, осуществляемыми митогенными путем активации данного сигнального пути, что продемонстрировано при многих злокачественных опухолях и ассоциировано с агрессивным течением заболевания [8, Косвенное влияние высоких концентраций инсулина на онкогенез связано с действием инсулина на синтез циркулирующих ростовых факторов, в частности ИФР-1.

ИФР-1. Инсулин. кроме усиления синтеза также снижает внутрипеченочный синтез белков. связывающих ИФР-1, к увеличению в плазме уровня свободного ИФР-1 и его метаболических эффектов. Конечным эффектом высоких концентраций инсулина и ИФР-1 являются активация митоза и синтеза ДНК, пролиферация и дифференцировка блокирование апоптоза в фолликулярных что сопровождается пятикратным ростом риска возникновения фолликулярной неоплазии ЩЖ [6, 8, 10]. Избыточная продукция ИФР-1 и его рецептора обнаружена в тканях фолликулярной аденомы и рака ЩЖ [8, 10].

Коррекция ИР в профилактике развития опухолей ШЖ

При лечении ожирения и связанной с ним ИР эндокринологи отдают приоритет снижению массы тела путем изменения образа жизни: соблюдения диеты и физической активности [7]. При неэффективности немедикаментозных методов лечения показана медикаментозная терапия. Ведущими препаратами в лечении ожирения в сочетании с ИР являются бигуаниды (метформин).

На сегодняшний день метформин гидрохлорид (метформин) является наиболее часто назначаемым препаратом при лечении ассоциированного с ожирением сахарного диабета 2 типа и нарушениями углеводного обмена [7]. Это обусловлено метаболическими эффектами метформин гидрохлорида (метформин). который повышает чувствительность тканей к инсулину. связывание инсулина с его рецептором на мембране клетки, активируя фосфорилирование остатков тирозина инсулиновых рецепторов и увеличивая их количество. Кроме того, метформин гидрохлорид (метформин) повышает активность протеинкиназы В, отвечающей за влияние инсулина на обмен веществ [7].

Согласно данным литературы метформин гидрохлорид (метформин) может оказывать онкопротективное действие, подавляя пролиферативные процессы и онкогенез. Кроме того, метформин может регулировать клеточное старение и апоптоз [11].

Заключение: Патогенез опухолей ЩЖ является сложнейшим, до конца не изученным процессом. В настоящее время определена роль влияния внешних в ЩЖ, запускающих онкогенез к числу которых оксидативный стресс. Изучается роль нарушения микроэлементного состава в организме, ожирения, высоких концентраций инсулина и ИР в запуске сигнальных путей онкогенеза в клетках ЩЖ. Появились доказательства

OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI 20.06.2022

взаимосвязи указанных механизмом между собой, совместном и потенцировании друг друга в процессе онкогенеза в ЩЖ, а также появляются предпосылки к управлению этим сложным процессом с использованием метформин (метформин) гидрохлорида и микроэлементов. Предстоит дальнейшее изучение препаратов группы бигуанидов и добавок микроэлементов для лечения и профилактики онкогенеза ШЖ.

ЛИТЕРАТУРА:

- 1. Петров В.Г., Нелаева А.А., Якимов С.Я. и др. Фолликулярная аденома щитовидной железы. Сибирский онкологический журнал. 2006;S1:80-81. [Petrov V.G., Nelaeva A.A., Yakimov S.Ya, et al. Follicular adenoma of the thyroid gland, Siberian **Journal** Oncology. 2006;S1:80-81 (in Russ.)].
- 2. McHenry C.R., Phitavakorn R. Follicular adenoma and carcinoma of the thyroid gland. Oncologist. 2011;16(5):585–593. DOI: 10.1634/theoncologist.2010-0405.
- 3. Ванушко В.Э., Фадеев В.В. Узловой зоб. Эндокринная хирургия. 2012:6(4):11-16. [Vanushko V.E., Fadeev V.V. Nodular goiter. Endokrinnaya 2012;6(4):11-16 khirurgiya. (in Russ.)].
- 4. Averyand J.C., Hoffmann P.R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. DOI: 10.3390/nu10091203.
- 5. Камилова H.M., Садыхов H.M., Алиев Ч.С. Диагностическое значение изучения влияния цинка, меди и прогностическое на состояние здоровья человека. Биомедицина. 2016;4:71-77. [Kamilova N.M., Sadikhov N.M., Aliev Ch.S. Diagnostic and prognostic value of studying the effect of zinc, copper and selenium on human health. Biomedicine. 2016;4:71–77 (in Russ.)].
- 6. De Pergola G., Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546. DOI: 10.1155/2013/291546.
- 7. Барсукова И.А., Демина А.А. Ожирение и инсулинорезистентность: механизмы развития и пути коррекции. РМЖ. 2021;2:26-30. [Barsukova I.A., Demina A.A. Obesity and insulin resistance: mechanisms of development and ways of correction. RMI. 2021;2:26-30 (in Russ.)].
- 8. Malaguarnera R., Morcavallo A., Belfiore A. The insulin and igf-I pathway in endocrine glands carcinogenesis. I Oncol. 2012;2012:635614. DOI: 10.1155/2012/635614.
- 9. Михаленко Е.П., Щаюк А.Н., Кильчевский А.В. Сигнальный пути: механизм регуляции пролиферации и выживаемости опухолевых клеток. Молекулярная и прикладная генетика. 2019;26:145-157. [Mikhalenko E.P., Shchayuk A.N., Kilchevsky A.V. Signaling pathways: the mechanism of regulation of proliferation and survival of tumor cells. Molekulyarnaya i prikladnaya genetika. 2019;26:145-157 (in Russ.)].

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA 9-son ILMIY TADQIQOTLAR JURNALI 20.06.2022

 10. Osher E., Macaulay V.M. Therapeutic Targeting of the IGF Axis. Cells.

 2019;8(8):895. DOI: 10.3390/cells8080895.
 11.

Вербовой А.Ф., Вербовая Н.И., Ломонова Т.В., Долгих Ю.А. Метформин: время расширять показания? РМЖ. 2021;2:37–41. [Verbovoy A.F., Verbovaya N.I., Lomonova T.V., Dolgikh Yu.A. Metformin: time to expand the indications? RMJ. 2021;2:37–41 (in Russ.)].

