

УДК 517.956.6

КРАЕВАЯ ЗАДАЧА ДЛЯ СМЕШАННО-ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ В НЕОГРАНИЧЕННОЙ ОБЛАСТИ

Акбарова С. Х.

Андижанский государственный университет, Андижан, Узбекистан Акбарова М.Х.

Ташкентский университет информационных технологий им. Мухаммеда ал Хорезми, Ташкент, Узбекистан

Ирисова М. А.

Ферганский государственный университет, Фергана, Узбекистан

Аннотация: В данной работе исследуется нелокальная краевая задача для смешанно-параболического уравнения в неограниченной области. Доказано существование и единственность решения поставленной задачи.

Ключевые слова: уравнения смешанного типа, краевая задача, прямопараболическое уравнение, обратно-параболическое уравнение, регулярное решение, область.

Пусть $D = D^- \cup I \cup D^+$ - бесконечная область, ограниченная прямыми t = 0, x = -1, t = T при x < 0, t > 0И t = 0, t = T при $x > 0, t > 0, _{\Gamma \Pi e}$ $D^- = \{(x,t): -1 < x < 0, 0 < t \le T\}, D^+ = \{(x,t): 0 < x < \infty, 0 < t \le T\},$ $I = \{(x,t) : x = 0, 0 < t \le T\}, T = const > 0;$ $I^+ = \{(x,t) : 0 \le x < \infty, t = 0\},$ $I^- = \{(x,t): -1 \le x \le 0, t = T\}; \alpha = const > 0; x = \beta(t)$ - заданная, непрерывнодифференцируемая в [0,T] функция, причем $-1 < \beta(t) < 0$.

Рассмотрим смешанно- параболическое уравнение

$$\operatorname{sgn} x u_t = u_{xx} - \alpha u. \tag{1}$$

Заметим, что уравнение (1) является прямо-параболическим в области $D^{^{+}},\;$ обратно-параболическим в области $D^{^{-}}$ [1].

Определение. Регулярным в области D решением уравнения (1) назовем функцию u(x,t) из класса $C^{2,1}(D^- \cup D^+)$, удовлетворяющую его в областях D^- , D^+ .

В области D исследуем следующую задачу:

3 а д а ч а A. Найти функцию u(x,t), обладающую свойствами:

1) $u(x,t) \in C^1(D)$ и непрерывна вплоть до границы области D;

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA 14-SON ILMIY TADQIQOTLAR JURNALI 20.12.2022

- 2) u(x,t) является регулярным в области D решением уравнения (1) и ограниченым для всех $0 \le x < \infty, 0 \le t \le T;$
 - 3) u(x,t) удовлетворяет краевым условиям:

$$u(x,t)\big|_{t=0} = \varphi(x), 0 \le x < \infty, \tag{2}$$

$$u(x,t)\big|_{t=T} = \psi(x), -1 \le x \le 0,$$
 (3)

$$u(x,t)\big|_{x=-1} = \beta_1(t) + \beta_2(t)u(x,t)\big|_{x=\beta(t)}, \ 0 \le t \le T$$
(4)

где $\varphi(x), \psi(x), \; \beta_1(t), \beta_2(t)$ - заданные функции, причем

$$arphi(x)$$
 - ограничена в $[0,\infty)$, $\psi(x) \in C[-1,0] \cap C^2(-1,0)$, $\psi(-1) = \beta_1(T) + \beta_2(T)u(\beta(T),T), \ \beta_1(t), \beta_2(t) \in C[0,T] \cap C^2(0,T].$

Имеется ряд работ, в которых изучаются краевые задачи для модельного смешанно-параболического уравнения. Отметим работы [2-3].

Теорема. Пусть выполнено условие

$$\left|\beta_2(t)\right| \le 1.$$

Тогда существует единственное решение задачи А.

Доказательство единственность решения поставленной задачи непосредственно следует из следующего принципа экстремума:

Принцип экстремума. Решение u(x,t) задачи А свои экстремальные значения в области \overline{D} принимает лишь на границе $I^- \cup I^+$.

Существование решения эквивалентным образом сведется к сингулярному интегральному уравнению с нулевым индексом нормального типа в классе h(0). С помощью метода Карлемана-Векуа[4-5], полученное уравнение сведется к интегральному уравнению Фредгольма 2-го рода, разрешимость которого следует из единственности решения задачи A.

Регулярное решение задачи A в области D определяется как решения первой краевой задачи с условиями (3), $u(0,t)= au(t), 0 \le t \le T$ (5) и $u(-1,t)= au_0(t), 0 \le t \le T$:

$$u(x,t) =$$

$$= \int_{t}^{T} \tau(\eta) G_{\xi}^{-}(x,t;0,\eta) d\eta - \int_{t}^{T} \tau_{0}(\eta) G_{\xi}^{-}(x,t;-1,\eta) d\eta + \int_{0}^{T} \tau_{0}(\eta) d\eta + \int_{0}^{$$

$$+\int_{-1}^{0}G^{-}(x,t,\xi,T)\psi(\xi)d\xi, \qquad (x,t)\in D^{-},$$

O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA 4-SON ILMIY TADQIQOTLAR JURNALI 20.12.2022

где $G^-(x,t;\xi,\eta)=G^+(-x,1-t;-\xi,1-\eta)$ - функция Грина первой краевой задачи в области D^- и

$$G^+(x,t;\xi,\eta) =$$

$$\cdot = \frac{1}{2\sqrt{\pi(t-\eta)}} \sum \left\{ e^{-\frac{(x-\xi-2n)^2}{4(t-\eta)}} - e^{-\frac{(x+\xi-2n)^2}{4(t-\eta)}} \right\},$$

а в области $\,D^{\scriptscriptstyle +}\,$ - задачи $\,$ с условиями (2), (5)[6-7].

ЛИТЕРАТУРА:

- 1. Фридман А. Уравнения с частными производными параболического типа. М.: Мир. 1968. 428 с.
- 2. Джураев Т.Д,, Акбарова М.Х. Нелокальные краевые задачи для смешанно-параболического уравнения // Уз.МЖ., 1993, №2.-С.16-25.
 - 3. Ўринов А.Қ. Параболик типдаги дифференциал тенгламалар учун чегаравий масалалар. 2015. Т.: MUMTOZ SO'Z. 196 б.
- 4. Мусхелишвили Н.И. Сингулярные интегральные уравнения. М.: Наука. 1968. 512 с.
- 5. Salohiddinov M. Integral tenglamalar. 2007. T.: Yangiyul polugraph service. 256 b.
- 6. Тихонов А.Н., Самарский А.А. Уравнения математической физики. 1968. М.: ГЛАВИЗДАТ. 679 с.
- 7. Салоҳиддинов М. Математик физика тенгламалари. 2002. Т.:"Ўзбекистон". 448 б.

