#### OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI



#### НОРМИРОВАНИЕ РАБОТЫ СЛЕСАРЯ НА ПРЕДПРИЯТИЯХ АВТОСЕРВИСА

#### Ортиков Сарвар Саттаралиевич

Докторант Андижанского института машиностроения Джумабаев Алижан Бакишевич

д.т.н., профессор, Андижанского машиностроение института

Аннотация. В данной статье представлена информация по определению времени процесса технического обслуживания норм и ремонта автотранспортных средств для работы слесарей на автосервисных предприятиях.

Ключевые слова: слесарные работы, норма времени, оборудование, технические условия, деталь, агрегат, стенд, технологическая карта, разборка, сборка.

#### RATIONING THE WORK OF A LOCKSMITH AT CAR SERVICE ENTERPRISES

**Annotation.** This article provides information on determining the time standards of the process of maintenance and repair of motor vehicles for the work of locksmiths at car service enterprises.

**Keywords:** locksmith work, standard time, equipment, technical specifications, part, unit, stand, technological map, disassembly, assembly.

Основными факторами, влияющими на продолжительность выполнения слесарных работ, являются: вид слесарных работ, применяемый инструмент, обрабатываемый материал, форма и размеры обрабатываемой поверхности, припуск на обработку, требуемая точность обработки, степень удобства выполнения работ, масштаб производства.

Для нормирования слесарных работ (разборочных, сборочных и др.) разрабатывают нормативные материалы различной степени укрупнения, т.е. на отдельные приемы, комплексы сборочных или других приемов, а также укрупнено на разборочно-сборочные процессы.

По простым трудовым приемам нормы устанавливают в зависимости от содержания работы, например, норма времени на различные виды соединений, затяжку болтов, винтов, гаек, на смазку и т.п. [1-3]

На типовые комплексы приемов, содержание которых наиболее часто встречается в сборочных процессах, например: сборка валика с сопряженными с ним деталями, сборка муфт, рычагов и др., могут устанавливаться укрупненные нормы.







При нормировании слесарных работ следует учитывать такую их особенность, как невозможность во многих случаях разделения основного и вспомогательного времени.

Основное время слесарных работ – это время непосредственного изменения формы и размеров путем обработки или соединения деталей между собой в сборочные узлы и механизмы.

Вспомогательное время – это затраты времени на действия, обеспечивающие выполнение основных элементов процесса. К ним относятся взятие инструмента, приспособлений и деталей, установка их в приспособления, закрепление, снятие деталей с приспособления и т.п. [4-8]

Многие действия кратковременны и трудноотделимы от основной работы. Поэтому, как правило, нормируются они вместе с основной работой с установлением нормативных затрат оперативного или неполного оперативного времени.

Другая часть вспомогательных действия, требующих относительно больших затрат времени, нормируется отдельно по специальным нормативам. К таким действиям относятся установка и закрепление деталей и т.п.

На слесарных сборочных работах, где преобладает ручной труд, основная работа неотделима от вспомогательной. В этом случае оперативное время определяется без разделения на основное и вспомогательное. Оперативное время сборочной работы, нормо-мин: [9-12]

$$T_{OII}^{CE} = T_y + T_B + T_{OEP} + T_{KP} + T_{IIP}$$
 (1)

где  $T_y$  - время собственно установки;

- время вспомогательных операций, выполняемых самим сборщиком (промывка, протирка, нагрев, обдувка, подборка и проверка деталей, установка деталей в приспособлениях и освобождение их из приспособлений, маркировка и т. д.) [10-13];

 $T_{{\scriptscriptstyle O\!E\!P}}$  - время обработочных операций;

 $T_{{\it KP}}$  - время крепительных операций;

 $T_{\it \Pi P}$  - время проверочно-контрольных операций.

Норма времени на сборочные работы определяется исходя из оперативного времени на каждую установку со всеми входящими элементами вспомогательной, обработочной и крепительной работы; вспомогательного времени, связанного со всем собираемым узлом, агрегатом или изделием; времени на обслуживание рабочего места; времени на отдых и личные надобности; времени на подготовительно-заключительные действия.





Норма времени, на такие операции как шабровка, резка, правка определяется по формуле [14-16]:

$$T = T_{OII} (1 + \frac{\alpha_{OB} + \alpha_{IIOTII} + \alpha_{II3}}{100})$$
, (2)

где - оперативное время на выполнение данной слесарной работы, нормомин, при этом в оперативное время включаются все затраты вспомогательного времени, которые связаны с используемым инструментом, обрабатываемой поверхностью, установкой, закреплением и снятием деталей;

 $\alpha_{_{06}}, \alpha_{_{noms}}, \alpha_{_{n3}}$ - коэффициенты, учитывающие время соответственно на обслуживание рабочего места, отдых и личные надобности, подготовительно- заключительные действия, в % от оперативного времени.

Для расчета нормы времени на такие работы как разметка, пропиливание, рубка, снятие заусенцев, притирка, нарезание резьбы может быть применена следующая формула [17-19]:

$$T = (t_{OII}^{H} + t_{B}^{H})(1 + \frac{\alpha_{OB} + \alpha_{IIOTI} + \alpha_{IIB}}{100}), (3)$$

где  $t_{OII}^{H}$  - неполное оперативное время, нормо-мин;

 $t_{B}^{II}$  - вспомогательное время на установку, снятие и закрепление детали, нормо-мин.

Следует учесть, что неполное оперативное время представляет собой оперативное время без вспомогательного времени на установку, снятие и закрепление детали. Неполное оперативное время определяется как сумма времени на выполнение чернового и чистового переходов по нормативам с учетом поправочных коэффициентов на измененные условия обработки, например твердость материала, класс точности обработки, припуск на обработку, характер обрабатываемой поверхности и др.

Для целей организации и нормирования слесарно-сборочных работ каждую сборочную операцию разбивают на отдельные трудовые приемы и комплексы приемов. Сумма продолжительностей отдельных комплексов определяет оперативное время перехода.

Норма длительности выполнения слесарно-сборочной операции определяется по формуле:

$$H_{A} = (\sum_{i=1}^{m} t_{\Pi C_{i}} + t_{B}) \cdot (1 + \frac{\alpha_{OB} + \alpha_{\Pi O T A} + \alpha_{\Pi B}}{100}), (4)$$

где  $t_{\Pi Ci}$  - время присоединения і-й детали (включая установку, выверку детали, осмотр детали перед сборкой, промывку, контрольные промеры и т.п.);

*m* - количество устанавливаемых на данной операции деталей;







 $t_B$  - вспомогательное время, связанное с собираемым изделием (регулировка изделия, кантование его в процессе сборки, снятие с верстака после сборки и т.п.).

В условиях массового производства нормирование сборочных работ осуществляется на основе микроэлементных нормативов по методике, изложенной в главе 10. Проектная норма проверяется с помощью хронометража

Проектирование норм на слесарные работы аналитически исследовательским способом

Производственные процессы, протекающие в структурных подразделениях железнодорожного транспорта, имеют целый ряд особенностей, среди которых можно выделить наличие в них операций, имеющих непостоянную структуру из-за неодинаковой повторяемости составляющих их элементов. Например, при выполнении ремонтных работ могут быть выявлены дополнительные неисправности, которые необходимо устранить. В качестве причины нестабильного перечня и трудоемкости работ можно выделить: разное состояние деталей и узлов при одном и том же виде ремонта подвижного состава, что безусловно требует разных затрат труда либо для их ремонта, либо – полной замены.

Таким образом, слесарные работы, выполняемые при ремонте подвижного состава, могут быть отнесены к процессам с переменным перечнем и трудоемкостью работ [20-24].

В этом случае исходные данные для проектирования норм получают по результатам фотографии производственного процесса. При проведении фотографии производственного процесса определяются:

- -качество проведения наблюдений, т.е. имеются замеры времени существенно отличающиеся от остальных;
  - -нормативная величина времени;
- -нормативная частота повторяемости устанавливаемых на ремонтируемый объект деталей.

Рассмотрим пример расчета нормативного времени в случае, когда все наблюдения были проведены доброкачественно и не было ошибочных замеров времени (табл. 1).

Таблица 1 Пример расчета нормативного времени

| Показатели | № наблюдений |   |   |   |   |   |   |   |   |    |      | Средня                       |
|------------|--------------|---|---|---|---|---|---|---|---|----|------|------------------------------|
|            | 1            | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | умма | я<br>нормативная<br>величина |







| Число<br>деталей,<br>устанавливаемых<br>на объект | 4   | 6  | 3  | 2  | 5  | 4  | 5  | 3  | 6  | 1  | 3   | 3,9  |
|---------------------------------------------------|-----|----|----|----|----|----|----|----|----|----|-----|------|
| Время на все<br>детали, мин.                      | 23  | 30 | 15 | 11 | 25 | 22 | 27 | 15 | 31 | 5  | 204 | 20,3 |
| Время на одну деталь, мин.                        | 5,8 | ,0 | ,0 | ,5 | ,0 | ,5 | ,4 | ,0 | ,2 | ,0 | 1   | 5,2  |

Нормативное время определяется делением суммы времени всех замеров (204 мин.) на их число (10). В рассматриваемом примере в качестве норматива принимаются средние затраты времени, равные 20,3 мин., что соответствует средней нормативной повторяемости устанавливаемых на объект деталей в количестве 3,9 [25-29].

В случаях, когда в результате анализа данных наблюдений будут установлены ошибки в наблюдении, т.е. отдельные замеры времени существенно отличаются от общей массы замеров (пусть по данным табл. 15.1. это будет замер под №1), то нормативное время рассчитывается следующим образом:

- по оставшимся девяти замерам определяют сумму затрат времени  $(30+15+11+25+22+27+15+31+5=181 \, \mathrm{мин.});$
- подсчитывают количество установленных за это время деталей (6+3+2+5+4+5+3+6+1=35);
  - затраты времени на одну деталь составят: 181:35=5,2 мин.;
- нормативные затраты времени на операцию определяются путем умножения затрат времени на одну деталь на нормативную повторяемость деталей: 5,2\*3,9=20,3 мин.

Рассмотрим вариант проведения наблюдений, при котором рассматриваемый элемент операции повторяется не на всех ремонтируемых объектах (табл. 2) [30-33].

Таблица 2 Пример расчета нормативного времени

| Показатели                     |    | № наблюдений |   |    |    |    |    |    |   |    |      | Средня                       |
|--------------------------------|----|--------------|---|----|----|----|----|----|---|----|------|------------------------------|
|                                | 1  | 2            | 3 | 4  | 5  | 6  | 7  | 8  | 9 | 10 | умма | я<br>нормативная<br>величина |
| Время на весь<br>повторяющийся | 21 | 18           | - | 20 | 23 | 19 | 22 | 17 | - | 20 | 160  | 16,0                         |





| объем работ, м                           |   |   |   |   |   |   |   |   |   |   |   |     |
|------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|-----|
| Нормативная<br>повторяемость<br>элемента | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | - | 1 | 8 | 0,8 |

Нормативные затраты времени будут определяться в следующем порядке:

- 1. Проверяется качество проведенных замеров по степени существенности их отклонений.
- 2. Если содержание работы и перечень трудовых приемов циклически повторятся на всех объектах, где встречается данный элемент, то нормативное время определяется делением суммы всех замеров времени на число наблюдений (160:10=16,0 мин.). Это соответствует средней нормативной повторяемости структурного элемента (8:10=0,8), т.е. при повторяемости данного элемента на всех объектах ремонта на его выполнение было бы необходимо (160:8=20 мин.).
- 3. В случае, если необходимо исключить ошибочные замеры времени (не более 15% от их общего числа) устанавливается нормативная повторяемость данного элемента работы на ремонтируемых объектах как частное от деления количества замеров на общее число наблюдений (8:10=0,8).
- 4. Определяются средние затраты времени на выполнение элемента, предполагая, что он повторяется на каждом объекте ремонта; для выполнения последующих расчетов составляется табл. 3

Таблица 3 Пример расчета нормативного времени

| Показател                                                    | Показател № наблюдений |    |   |    |    |    |    |   |   |    | С    | Средня                       |
|--------------------------------------------------------------|------------------------|----|---|----|----|----|----|---|---|----|------|------------------------------|
| И                                                            | 1                      | 2  | 3 | 4  | 5  | 6  | 7  | 8 | 9 | 10 | умма | я<br>нормативная<br>величина |
| Время на весь постоянно повторяющийся объем работ            | 12                     | 18 | - | 20 | 23 | 19 | 22 | - | - | 20 | 143  | 16,3                         |
| Нормативн<br>ая<br>повторяемость<br>структурного<br>элемента | 1                      | 1  | - | 1  | 1  | 1  | 1  | 1 | - | 1  | 8    | 0,8                          |

В нашем примере исключен замер №8. Средние затраты времени на выполнение элемента операции определяют путем деления суммы затрат





времени по оставшимся замерам на количество этих замеров. Средние затраты времени на выполнение элемента:

$$\frac{21+18+20+23+19+22+20}{7} = 20,4 \text{ мин.}$$
(5)

5. Нормативное время для включения в расчет нормы определяется умножением средних затрат времени на нормативную частоту повторяемости элемента, т.е. в нашем примере: 20,4\*0,8=16,3 мин.

Достаточно часто необходимо нормировать работы не постоянные по своему составу и перечню приемов (табл. 4) [34-37].

Таблица 4 Пример расчета нормативного времени

| Показатели                                      |     | Nº 1 | абл | людеі |     | С   | Средня |     |     |     |         |                              |
|-------------------------------------------------|-----|------|-----|-------|-----|-----|--------|-----|-----|-----|---------|------------------------------|
|                                                 | 1   | 2    | 3   | 4     | 5   | 6   | 7      | 8   | 9   | 10  | умма    | я<br>нормативная<br>величина |
| Число<br>заменяемых<br>ремонтируемых<br>деталей | 2   | 4    | -   | 5     | 1   | 3   | 2      | 4   | 6   | 3   | 3       | 3,0                          |
| Время на все<br>детали                          | 17  | 24   | -   | 27    | 6   | 20  | 15     | 23  | 35  | 1   | 1<br>86 | 18,6                         |
| Время на<br>одну деталь                         | 8,5 | 6,0  | -   | 5,4   | 6,0 | 6,7 | 7,5    | 5,8 | 5,8 | 6,3 | -       | 6,2                          |

В данном случае средняя нормативная повторяемость деталей равно 30:10=3. нормативное время, учитываемое при расчете нормы на операцию:

$$\frac{17+24+27+6+20+15+23+35+15}{10} = 18,6 \text{ мин.}$$

Рассмотрим случай, когда замер №1 является недоброкачественным и будет исключен из рассмотрения. При этом нормативная повторяемость деталей в среднем на одном объекте не изменится и составит 3,0, а нормативное время [38-40]:

$$\frac{24+27+6+20+15+23+35+19}{4+5+1+3+2+4+6+3} \cdot 3 = 18,1 \text{ мин.}$$
(7)

операцию определяют целом норму времени на аналогично хронометражным наблюдениям путем суммирования нормативных затрат времени по каждому элементу. Рассчитанная таким образом норма времени оформляется в форме технолого-нормировочной карты.





#### СПИСОК ЛИТЕРАТУРЫ:

- 1. С.К. Шестопалов., Устройство техническое, обслуживание и ремонт легковых автомобилей. Москва «Академия» 2002.
- 2. Г.В. Крамаренко., Техническое обслуживание автомобилей. Издательство «Транспорт» 1982г.
- 3. В.М. Виноградов., Технологические процессы ремонта автомобилей. Москва. Издательский центр «Академия» 2012.
- 4. Насиров, И. З., Ёкубов, Ё. О., & Нуманов, М. З. (2019). Новые свечи зажигания для ДВС. Іп Сборник статей республиканской научно-практической конференции «Инновационное развитие современной науки». Андижан: АндМИ-2019 (pp. 542-545).
- 5. Худойбердиев, Т. С., & Носиров, И. 3. (2018). Қосимов ИС Ички ёнув двигатели учун ўт олдириш свечаси ва уни ўрнатиш таглиги. *Научно-технический журнал ФерПИ (STJ FerPI)*, (1), 46-52.
- 6. *Румянцев Г. Г.* Опыт применения метода «незаконченных предложений» в психиатрической практике // Исследования личности в клинике и в экстремальных условиях. Л., 1969. С. 266–275.
- 7. Насиров, И. З., Косимов, И. С., & Каримов, А. А. (2017). "Морфологик тахлил" методини қўллаб ўт олдириш свечасини такомиллаштириш. *Инновацион технологиялар*, (3 (27)), 74.
- 8. Xudayberdiev, T. S., Nosirov, I. Z., & Qoʻshaqov, D. A. (2016). Ichki yonuv dvigatellari uchun takomillashgan yondirish svechasi. *Научный вестник машиностроения*, (2), 47-158.
- 9. Насиров, И. З., & Юсупбеков, Х. А. (2020). Использование метода «Морфологический анализ» в усовершенствовании свечи зажигания. *Молодой ученый*, (43), 333.
- 10. Насиров, И. З., & Юсупбеков, Х. А. (2020). РЕЗУЛЬТАТЫ ИСПЫТАНИЙ РАЗЛИЧНЫХ СВЕЧ ЗАЖИГАНИЯ ДЛЯ ДВС СОВРЕМЕННЫХ АВТОМОБИЛЕЙ. Журнал «Интернаука» № 39(168), 2020 г., с. 28-31.
  - 11. Nasirov, I. Z. (2020). Ichki yonuv dvigatellari uchun o't oldirish svechalari.
- 12. Насиров Ильхам Закирович. (2022). МУСТАҚИЛ ИШЛАРНИ ТАШКИЛ ЭТИШНИНГ ШАКЛЛАРИ. *Конференц-зона*, 327–332. Получено с http://www.conferencezone.org/index.php/cz/article/view/867.
- 13. Сайидкамолов, И. Р. Исследование соответствия вместимости автобусов сложившемуся пассажиропотоку на маршруте № 21 общественного пассажирского транспорта г. Волгограда / И. Р. Сайидкамолов // Конкурс научно-исследовательских работ студентов Волгоградского государственного технического университета (г. Волгоград, 26–30 апреля 2021 г.) : тез. докл. / редкол.: С. В. Кузьмин (отв. ред.) [и др.] ; ВолгГТУ, Отд. координации науч.







исследований молодых ученых УНиИ, Общество молодых ученых. - Волгоград, 2021. - C. 170.

- 14. Rahmatullo Rafuqjon oʻgʻli Rahimov (2022). Avtomobil transportida tashuv ishlarini amalga oshirishda harakat xavfsizligini ta'minlash uslublarini takomillashtirish yoʻllari. ОБРАЗОВАНИЕ И НАУКА В XXI ВЕКЕ, 750-754.
- 15. Rafuqjon o'g'li, R. R. (2022, December). TIRSAKLI VALLARNI TAMIRLASH ISTIQBOLLARI. In *Conference Zone* (pp. 333-342).
- 16. Шодмонов, С. А. (2022). ДАТЧИКИ ТЕМПЕРАТУРЫ. European Journal of Interdisciplinary Research and Development, 4, 62-66.
- 17. Хомидов Анварбек Аҳмаджон & Шодмонов Сайидбек ўғли, **ТЕМПЕРАТУРЫ**. *European* Абдувайитович. (2022).ДАТЧИКИ Iournal *Interdisciplinary* Research Development, 4. 62-66. and http://www.ejird.journalspark.org/index.php/ejird/article/view/65
- 18. Shodmonov, S. A. (2022). GLOBAL ELEKTR AVTOMOBILLARINI ISHLAB CHIQISH VA ELEKTR MASHINA ASOSLARI.
- 19. Shodmonov Sayidbek Abduvayitovich, Abbasov Saidolimxon Jaloliddin oʻgʻli, & Xomidov Anvarbek Axmadjon oʻgʻli. (2022). RESPUBLIKAMIZDA YUKLARNI TASHISHDA LOGISTIK XIZMATLARNI QOʻSHNI RESPUBLIKALARDAN OLIB CHIQISH VA RIVOJLANTIRISH OMILLARI . *JOURNAL OF NEW CENTURY INNOVATIONS*, 9(1), 83–90. Retrieved from <a href="http://wsrjournal.com/index.php/new/article/view/1970">http://wsrjournal.com/index.php/new/article/view/1970</a>
- 20. НАСИРОВ, И.З., & Аббаов С.Ж. (2022). ВОДОРОД ИШЛАБ ЧИҚАРИШ УСУЛЛАРИ ВА ИСТИҚБОЛЛАР. Meждународный журнал философских исследований и социальных наук, 99–103. Получено <a href="http://iipsss.iscience.uz/index.php/iipsss/article/view/237">http://iipsss.iscience.uz/index.php/iipsss/article/view/237</a>.
- 21. Nasirov Ilham Zakirovich, Sarimsaqov Akbarjon Muminovich, Teshaboyev Ulugbek Mirzaahmadovich, <u>Gaffarov Mahammatzokir Toshtemirovich</u>. <u>Tests of a reactor for supplying hydrogen and ozone to an internal combustion engine</u>// International Journal of Early Childhood Special Education (INT-JECSE) ISSN: 1308-5581. DOI 10.9756/INT-JECSE/V1413.693? Vol 14, Issue 03 2022, 5296-5300 p.
- 22. Nasirov Ilham Zakirovich, Rakhmonov Khurshidbek Nurmuhammad ugli, Abbasov Saidolimkhon Jaloliddin coals. Adding Hydrogen to the Fuel-Air Mixture in Engines// Eurasian Journal of Learning and Academic Teaching. ISSN: 2795-739X www.geniusjournals.org. JIF: 8.225. Volume 8| May 2022, p. 75-77.
- 23. Насиров И.З., Рахмонов Х.Н. Результаты стендовых испытаний электролизера//U55 Universum: технические науки: научный журнал. № 3(96). Часть З. М., Изд. «МЦНО», 2022. 72 с.– Электрон. версия печ. публ.– http://7universum.com/ru/tech/archive/category/396.DOI-10.32743/UniTech.2022.96.3.13262. с. 34-36.
- 24. Akbarjon, Gaffarov Makhamatzokir METHODS OF PASSENGER TRANSPORT LOGISTICS DEVELOPMENT IN THE CITY // Бюллетень науки и практики. 2020.







- №11. URL: https://cyberleninka.ru/article/n/methods-of-passenger-transport-logistics-development-in-the-city (дата обращения: 24.11.2022).
- 25. Саримсаков Акбар Муминович ПУТИ РАЗВИТИЯ КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ В ПАССАЖИРСКОМ ТРАНСПОРТЕ // Universum: технические науки. 2021. №10-2 (91). URL: https://cyberleninka.ru/article/n/puti-razvitiya-kommunikatsionnyh-tehnologiy-v-passazhirskom-transporte (дата обращения: 24.11.2022).
- 26. Zakirovich, N. I., Muminovich, S. A., Mirzaahmadovich, T. U., & Toshtemirovich, G. M. Tests of a reactor for supplying hydrogen and ozone to an internal combustion engine. *International Journal of Early Childhood Special Education (INTJECSE) ISSN*, 1308-5581.
- 27. B.B.Batirov, O. (2021). Content of pedagogical experience in the structure of physics teaching and methodological basis of its organization. *Academicia*, 422-427.
- 28. B.Batirov, A. S. (2019). DIFFERENTIAL LEARNING IN PHYSICS. European Journal of Research and Reflection in Educational Sciences, Page 24-27.
- 29. To'ychiyev.Sh.Sh, &. A. (2022 g.30-aprel). BA'ZI NOAN'ANAVIY MASALALARNING YECHIMLARI. *Eurasian Journal of Mathematical Theory and Computer Sciences*, st: 65-68.
- 30. Zakirovich, N. I. (2022 yil). Parallel educational and scientific works in higher educational institution . /MASHINASOZLIK ILMIY-TEXNIKA JURNALI, 517-522 b.
- 31. Насиров Ильхам Закирович, Рахмонов Хуршидбек Нурмухаммад угли, Аббасов Сайдолимхон Джалолиддин угли. (2022). Испытания газового устройства Braun. Журнал фармацевтических отрицательных результатов, 1545–1550. https://doi.org/10.47750/pnr.2022.13.S08.185
- 32. Насиров, И. З., Косимов, И. С., & Каримов, А. А. (2017). "Морфологик тахлил" методини қўллаб ўт олдириш свечасини такомиллаштириш. *Инновацион технологиялар*, (3 (27)), 74.
- 33. Закирович Н.И., Муминович С.А., Мирзаахмадович Т.Ю., Тоштемирович Г.М. Испытания реактора подачи водорода и озона к двигателю внутреннего сгорания. Международный журнал специального образования детей младшего возраста (INTJECSE) ISSN, 1308-5581.
- 34. Насиров Ильхам Закирович. (2022). МУСТАҚИЛ ИШЛАРНИ ТАШКИЛ ЭТИШНИНГ ШАКЛЛАРИ. Конференц-зона, 327–332. Получено с http://www.conferencezone.org/index.php/cz/article/view/867.
- 35. To'ychiyev.Sh.Sh, &. A. (2022 г.30-апрел). BA'ZI NOAN'ANAVIY MASALALARNING YECHIMLARI. Eurasian Journal of Mathematical Theory and Computer Sciences, ст: 65-68.
- 36. G.Komolova, O. B. (2022). "Multiplication Probability and Sum of Events, A Complete Group of Events, Absoluteprobability Formula" . *CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES jurnali*, 53-57.







- 37. G.Komolova. "Hosilani ketma-ketlikdagi ba`zi masalalarni yechishga tadbig`i." "O`ZBEKISTON VA AVTOMOBIL SANOATI: FAN, TA`LIM VA ISHLAB CHIQARISH INTEGRATSIYASI" xalqaro ilmiy-amaliy anjuman materiallari, 386-389 betlar,AndMI.
- 38. Komolova. (2021-yil). "Diffrensial hisobning asosiy teoremalari". "SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL. ISSN 2181-0842, 9-12 betlar
- 39. G.Komolova, K. M. (2022). "Stages of Drawing up a Mathematical Model of the Economic Issue". *Journal of Ethics and Diversity in International Communication jurnali, e-ISSN: 2792-4017 | www.openaccessjournals.eu | Volume: 1 Issue: 8*, 76-79.
- 40. Комолова Гулхаё, Х. М. (2022.). Комолова Гулхаё, Халилов Муродил, Комилжоноа Бобур, "Solve some chemical reactions using equations". EUROPEAN JOURNAL OF BUSINESS STARTUPS AND OPEN SOCIETY VOL 2 NO 1, 45-48.

