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We consider the Markov Branching Process to be the homogeneous continuous-

time Markov chain { }( ), 0Z t t і  with state space 0 {0}= US S , where МNS  and 

{1,2, }= KN . The transition probabilities of the process 

{ }( ) : ( ) (0)ijP t Z t j Z i= = =P  

satisfy the following branching property: 

( ) ( ) ,i

ij ijP t P t for all i j= О S* , 

where the asterisk denotes convolution. Herein transition probabilities 1 ( )jP t  are 

expressed by relation 

1 1( ) ( ) 0j j jP t a o as= d + e + e e Ї , 

where ijd  is Kronecker’s delta and { }ja  are intensities of individuals’ 

transformation that 0ja і  for 0 \ {1}j О S  and 

0

0 1
\ {0}

0 j
j

a a a
О

< < - = < Ґе
S

. 

The process { }( )Z t  was defined first by Kolmogorov and Dmitriev [4]; for more 

detailed information see [1, 2]. 

Defining generating functions 
0

1( ; ) j

jj
F t s P s

О
= е S

 and 
0

( ) j

jj
f s a s

О
= е S

 for 

[0,1)s О  we keep on the critical case that is (1 ) 0f ў - =  and, assume that the 

infinitesimal generating function ( )f s  has the representation 

(1 ) ( )f y y y- = L                                                  [ ]fn
 

for (0,1]y О  with ( )( ) 1y y ynL = L , where 0 1< n Ј  and ( )*L  is slowly varying 

(SV) function at infinity (in sense of Karamata); see [3, 5]. Note that the function ( )y yL  

is positive and tends to zero and has a monotone derivative so that ( ) ( )y y yўL L ® n  

as 0y Ї ; see [3, p. 401]. Thence it is natural to write 
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( )
( )

( )

y y
y

y

ўL
= n + d

L
,    [ ]Ld

 

where ( )yd  is continuous and ( ) 0yd ®  as 0y Ї . 

Let ( ; ) : 1 ( ; )R t s F t s= - . Sevastyanov [6] proved that if (1 )f ўўў - < Ґ  then 

( )
1 1 (1 )

ln
( ; ) 1 2

f
t t

R t s s

ўў -
- = +

-
O  

as t ® Ґ  for all [0,1)s О ; see [6, p. 72]. The following lemma is an essentially 

improvement of Sevastyanov’s result. 

Lemma. Under the conditions [ ]fn
 and [ ]Ld

 

( )
( )

0

1 1
( ; )

( ; ) (1 )

t

t R u s du
R t s s

- = n + d
L L - т . 

If in addition ( ) ( )y yd = L  then 

( )
( )

1 1 1
ln ( ; ) ln ( ; )

( ; ) (1 )
t t s o t s

R t s s
- = n + n + n

L L - n
 

as t ® Ґ , where ( ; ) (1 ) 1t s s tn = L - n + . 

From this Lemma we obtain the following two limit theorems. 

Theorem 1. Let conditions [ ]fn
, [ ]Ld

 hold and ( ) ( )y yd = L . Then 

{ }
[ ]0

1 3

ln 1( ) ln
( ) 0 1

( )

a tt t
Z t o

t tt
n

ж цn + ж цчз чз> = - + чз чз ччзз чи шnи шn
P

N
 

as t ® Ґ , where ( )tN  is the SV-function satisfying a condition 

1
( )

( ) 1,
( )

t
t as t

t

n

n
ж цn чз чЧ ѕ ѕ ® ® Ґз чз чзи ш

N L
N

. 

Theorem 2. Let conditions [ ]fn
, [ ]Ld

 hold and ( ) ( )y yd = L . Then 

[ ]1 1 0

11 3

0

ln 1( ) 1 ln
( ) ( ) 1

a tt t
t P t o

a t t

+ n ж цn + ж ц+ n чз чзn = - + чз чз ччзз чи шnи ш

N
 

as t ® Ґ , where the SV-function ( )tN  is defined in Theorem 1. 
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