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We consider Gradient Gibbs measures corresponding to a periodic boundary law for 

a generalized SOS model with spin values from a countable set, on Cayley trees. On the 

Cayley tree, detailed information on Gradient Gibbs measures for models of SOS model 

are given in [3, 8, 11, 16]. Investigating these works for the generalized SOS model, in this 

paper the problem of finding Gradient Gibbs measures which correspond to periodic 

boundary laws is reduced to a functional equation. 

By solving this equation all Gradient Gibbs measures with 4 periodic boundary laws 

are found.  
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INTRODUCTION 

The gradient Gibbs measure is a probability measure on the space of gradient 

fields defined on a manifold. It is often used in statistical mechanics to describe the 

equilibrium states of a system. The gradient Gibbs measure is derived from the Gibbs 

measure, which is a probability measure on the space of field configurations. The 

critical difference is that the gradient Gibbs measure focuses on the gradients of the 

fields rather than the fields themselves (e.g. [7]). Specifically, the Gradient Gibbs 

measure is defined on the set of spin configurations of a system on a Cayley tree. The 

Gradient Gibbs measure on a Cayley tree assigns a probability to each possible spin 

configuration based on the energy of that configuration. The energy of a spin 

configuration is determined by the interactions between neighboring spins. In the case 

of a Cayley tree, each spin is coupled to its nearest neighbors along the edges of the 

tree (see [5]). 

Mathematically, the gradient Gibbs measure assigns a probability to each possible 

configuration of a gradient field on the Cayley tree, based on an energy function. The 

energy function typically represents the interactions between the gradients of a scalar 

field or a vector field. The probability of a configuration is proportional to the 

exponential of the negative energy of that configuration (e.g. [1, 4, 5, 12, 14]). 

The study of random field x  from a lattice graph (e.g., d  or a Cayley tree k ) to 

a measure space ( , )E E is a central component of ergodic theory and statistical physics. 

In many classical models from physics (e.g., the Ising model, the Potts model, the SOS 
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model), E is a finite set (i.e., with a finite underlying measure λ ), and x  has a physical 

interpretation as the spin of a particle at location x in a crystal lattice (detail in [1, 2, 3, 

6, 7, 8, 9, 10, 14, 15]). 

Let us give basic definitions and some known facts related to (gradient) Gibbs 

measures. The Cayley tree ( , )k V L =  of order k ≥ 1 is an infinite tree, i.e. connected 

and undirected graph without cycles, each vertex of which has exactly k + 1 edges. 

Here V is the set of vertices of k and L is the set of its edges. 

Consider models where the spin takes values in the set +

  , and is assigned to 

the vertices of the tree. Let A

A =   be the set of all configurations on A and : V = . A 

partial order ≤ on Ω defined pointwise by stipulating that σ1 ≤ σ2 if and only if σ1(x) ≤ 

σ2(x) for all x ϵ V . Thus (Ω;≤) is a poset, and whenever we consider Ω as a poset then it 

will always be with respect to this partial order. The poset Ω is complete. Also, Ω can 

be considered as a metric space with respect to the metric : +→  given by 

   ( ) ( ) ( )
0

( ) , ( ) 2 ,
n nn n

n

n n x xx V x V
n

x x
 

   

 −

 


= X  

where 0 1 2{ , , ,....}V x x x= and AX  is the indicator function. 

We denote by N the set of all finite subsets of V . For each A V let : A

A →  be 

given by ( ) ( )A x xx V x A
  

 
=  and let ( )( )1 A

A A
−= C P . Let 

A

A

=
N

C C  and F  is the 

smallest sigma field containing C . Write  V\ =T F and T for the tail-σ-algebra, i.e., 

intersection of  T  over all finite subsets Λ of L: The sets in T are called tail- 

measurable sets. 

Definition 1. [5] Let : : { , }P → =  −   be F -measurable mapping for all Λ ϵ 

N, then the collection   P P 
=

N
 is called a potential. Also, the following expression 

 def 

,

,

( ) ( ), .PH P   

 

=  
N

                                           (1) 

is called Hamiltonian H associated with the potential P. 

For a fixed inverse temperature β > 0, the Gibbs specification is determined by a 

family of probability kernels  ( )  
=

N
 defined on c 

 F by the Boltzmann-Gibbs 

weights 

( ),
1

( ) PH
e

  


    −

 



=
Z

∣                                                    (2) 

where ( ),PH
e

 



 



−





= Z  is the partition function, related to free energy. 

From [5], the family of mappings { ( )}   N∣  is the family of proper F - measurable 

quasi-probability kernels. Thus, the collection   
=

N
V  will be called an F-

specification if     =  whenever , N  with   . Let   
=

N
V  be an F-
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specification; then a probability measure µ ϵ  P(F) is called a Gibbs measure with 

specification V if  =  for each N . 

1 Gradient Gibbs measure 

For any configuration ( ( )) V

x Vx  =   and edge ,e x y=    of L  (oriented) the 

difference along the edge e is given by e y x   = −  and  is called the gradient field 

of  . The gradient spin variables are now defined by ,x y y x    = −  for each ,x y  . The 

space of gradient configurations is denoted by  . The measurable structure on the 

space   is given by σ-algebra 

( ): { } .e e L  = F ∣  

Note that F  is the subset of F  containing those sets that are invariant under 

translation c → +  for c E . Similarly, we define 

,   

   =  = T T F F F F  

For nearest-neighboring (n.n.) interaction potential ( )b b
 =  , where ,b x y=    is 

an edge, define symmetric transfer matrices  bQ   by 

( )
( ) ( ) ( )( )1 1

{ } { }| | | |
.

b b x x y yx y

b bQ e
  


− −−  +   +  

=  

Define the Markov (Gibbsian) specification as 

( ) ( ) ( )1

0

( ) .b b

b

Z Q       −

   



= = ∣  

If for any bond ,b x y=    the transfer operator ( )b bQ   is a function of gradient 

spin variable b y x  = −  then the underlying potential   is called a gradient 

interaction potential. Note that for all A F , the kernels ( , )A 

  are F  -

measurable functions of  , it follows that the kernel sends a given measure µ on 

( ),  F  to another measure  

  on ( ),  F . A measure µ on ( ),  F  is called a 

gradient Gibbs measure if it satisfies the equality  

 =  (detail in [10, 11, 13]). 

Note that, if µ is a Gibbs measure on ( , ) F , then its restriction to F  is a 

gradient Gibbs measure. A boundary law is called q-periodic if ( ) ( )xy xyl i q l i+ =  for every 

oriented edge ,x y    L  and each i . 

It is known that there is a one-to-one correspondence between boundary laws 

and tree indexed Markov chains if the boundary laws are normalisable in the sense of 

Zachary [15]: 

Definition 2. (Normalisable boundary laws). A boundary law l is said to be 

normalisable if and only if 

( ) ( ),
x z

zx x z zx z

z x

Q l
 

  
 

 
  

 
   

for any x V . 

The correspondence now reads the following: 



JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH 

VOLUME-7 ISSUE-6 (30- June) 

19 

 

Theorem 1. (Theorem 3.2 in [15]). For any Markov specification γ with associated 

family of transfer matrices ( )b b L
Q


 we have 

1.Each normalisable boundary law ( )
,xy x y

l  for ( )b b L
Q


 defines a unique tree-

indexed Markov chain ( ) G  via the equation given for any connected set S  

( ) ( ) ( ) ( )
1

yy y b b

y b

Z l Q    


−

  

 

= =                                   (3) 

where for any ,y y  denotes the unique n.n. of y  in  . 

2. Conversely, every tree-indexed Markov chain ( ) G  admits a representation 

of the form (3.15) in terms of a normalisable boundary law (unique up to a constant 

positive factor). 

The Markov chain µ defined in (3) has the transition probabilities 

( )
( ) ( , )

( , )
( ) ( , )

yx yx

xy y x

yx yx

s

l j Q j i
P i j j i

l s Q s i
  = = = =


∣                                 (4) 

The expressions (4) may exist even in situations where the underlying boundary 

law  ( )
,xy x y

l  is not normalisable. However, the Markov chain given by (4), in general, 

does not have an invariant probability measure. Therefore in [8]; [9]; [10]; [11] some 

nonnormalisable boundary laws are used to give gradient Gibbs measures. 

Now we give some results of above-mentioned paper. Consider a model on Cayley 

tree ( , )k V L = , where the spin takes values in the set of all integer numbers . The set 

of all configurations is : V = . 

Now we consider the following Hamiltonian: 

,

( ) (| |) | |x y x y

x y

H J     
 

= − − − ,                                           (5) 

where 

1

1 2

2

, if $m 2 $
(| |) , , .

, if $m 2 +1$

p
m p p

p
 +


= 


 

Note that if p1 = p2 then the considered model is called SOS model. 

For the Hamiltonian (5) the transfer operator is defined by 
(| |)| |( , ) ,J i j i jQ i j e − − −=  

where β > 0 is the inverse temperature and J  . 

Also, the boundary law equation of the Hamiltonian can be written as: 

0

0

( ,0) ( , )

(0,0) (0, )

k

j

j Z

i

j

j Z

Q i Q i j z

z
Q Q j z





 +
 

=  
+

 
 




.                                            (6) 

Put : exp( ) 1J = −  . For translation invariant boundary law, the transfer 

operator Q reads | |( ) i jQ i j  −− =  for any ,i j . If : 1Je  −=   then we can write the 

equation (6) as 
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0

0

(| |)| | (| |)| |

0(| |)| |
, : {0}.

1

k
i i i j i j

j

j Z

i j j

j

j Z

z

z i
z

 



 



− −





 +
 

=  = 
+

 
 




‚                           (7) 

Let { }i iz   be q -periodic sequence, i.e. i i qz z +=  for all i . 

{
 
 
 
 
 
 

 
 
 
 
 
 

0

0

(|1|) (|1 |)|1 |

1 (| |)| |
;

1

k
j j

j

j Z

j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





0

0

2 (|2|) (|2 |)|2 |

2 (| |)| |
;

1

k
j j

j

j Z

j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





... ... ... ... ...

0

0

(| |) (| |)| |

(| |)| |
.

1

k
q q q j q j

j

j Z

q j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





                                           (8) 

Proposition 1. Let { }i iz   be q-periodic sequence. Then finding q-periodic 

solutions 

to the system (7) is equivalent to solving the system of equations (8). 

Proof. To prove the Proposition, it is sufficient to show i q iz z +=  for all 

{1,2,..., 1, }i q q − . Since 0 0z = , for a fixed 0i  , the numerator of the fraction in (7) can 

be written as 
0 0 0 0 0 0

0

(| |)| | (| |)| | (| |)| |
.

i i i j i j i j i j

j j

j j

z z
    − − − −

 

+ =   

Also, it can be rewritten as 
0 0 1 2 2 1

0 0 0 0 0

(| |)| | 2 2

2 1 1 2... ...
i j i j p p p p

j i i i i i

j

z z z z z z
    − −

− − + +



= + + + + + +                               (9) 

Similarly, for 0i q+  we have 

0 0 1 2 2 1

0 0 0 0 0

(| |)| | 2 2

2 1 1 2... ...
i q j i q j p p p p

j i q i q i q i q i q

j

z z z z z z
    + − + −

+ − + − + + + + +



= + + + + + +         (10) 

If we change k qz +  in (10) to kz  for all k  then we obtain (9). Namely, we have 

proved 

0 0 0 0

0

0

0

(| |) (| |)| |

(| |)| |1

k
i i i j i j

j

j Z

i j j

j

j Z

z

z
z

 



 



− −





 +
 

= = 
+

 
 





0 0 0 0

0

0

0

( ) (| |) (| |)| |

(| |)| |1

k
i q i q i q j i q j

j

j Z

i qj j

j

j Z

z

z
z

 



 



+ + + − + −



+



 +
 

= 
+

 
 




. 

Let 
0

k
i iu u z=  for some 0 0u  . Then using the Proposition 1 we obtain 

2 1 2 2 1 2

2 1 2 2 1 2

3 2 2 3

3 2 1 1 2 3

3 2 2 3

3 2 1 0 1 2 3

... ...
.

... ...

p p p p p pk k k k k k k

i i i i i i i
i p p p p p pk k k k k k k

u u u u u u u
u

u u u u u u u

     

     
− − − + + +

− − −

+ + + + + + + +
=

+ + + + + + + +
 

We can rewrite the last system of equations in the following form: 
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1 2 2 1

1 2 2 1

2 (2 1) (2 1) 2

2 2 1 2 1 2

1 1 1 1

2 (2 1) (2 1) 2

2 2 1 0 2 1 2

1 1 1 1

,

p j j p j p p jk k k k k

i j i j i i j i j

j j j j

i
p j j p j p p jk k k k k

j j j j

j j j j

u u u u u

u

u u u u u

   

   

   
− −

− − + + − +

= = = =

   
− −

− − + −

= = = =

+ + + +

=

+ + + +

   

   
 where .i         

(11) 

2 Main results 

In this section, we find periodic solutions (defined in [16]) to (7) which 

correspond to periodic boundary condition. Namely, for all m ϵ Z we consider the 

following sequence: 

1, 2 ;

, 4 1;

, 4 1,

n

ifn m

u a ifn m

b ifn m

=


= = −
 = +

                                                         (12) 

where a and b are some positive numbers. 

By Proposition 1, finding solutions that are formed in (12) to (7) is equivalent to 

solving the following system of equations: 

{
 
 

 
 

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

4 3 2 2 3 4

4 3 2 2 3 4

... ...
;

... 1 ...

p p p p p p p pk k k k k

p p p p p p p pk k k k

a b a b a
a

b a b a

       

       

+ + + + + + + + + +
=

+ + + + + + + + + +

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

4 3 2 2 3 4

4 3 2 2 3 4

... ...
.

... 1 ...

p p p p p p p pk k k k k

p p p p p p p pk k k k

b a b a b
b

b a b a

       

       

+ + + + + + + + + +
=

+ + + + + + + + + +
.

          (13) 

Namely, 

{
 
 

 
 

2 2 1 1 1 1

1 1 2 2

3 4 8 2 6

2 4 3

2( ...) (1 2 2 ...) 2( ...)
;

1 2 2 ... ( ...)( )

p p p p p pk k

p p p p k k

a b
a

a b

     

   

+ + + + + + + + +
=

+ + + + + + +

2 2 1 1 1 1

1 1 2 2

3 4 8 2 6

2 4 3

2( ...) (1 2 2 ...) 2( ...)

1 2 2 ... ( ...)( )

p p p p p pk k

p p p p k k

b a
b

a b

     

   

+ + + + + + + + +
=

+ + + + + + +

              (14) 

Taking into account θ < 1 one writes the last system of equations as follows: 
2 1 1

2 1 1

1 2

1 2

4 2

2 4 4

2

2 2

2 1 2

1 1 1

1
( )

1 1

p p p
k k

p p p

p p
k k

p p

a b

a

a b

  

  
 

 

+
+ +

− − −=
+

+ +
− −

,   

2 1 1

2 1 1

1 2

1 2

4 2

2 4 4

2

2 2

2 1 2

1 1 1

1
( )

1 1

p p p
k k

p p p

p p
k k

p p

b a

b

a b

  

  
 

 

+
+ +

− − −=
+

+ +
− −

.           (15) 

For all k  and 1 2,p p  , the analysis of (15) is so difficult and that’s why we 

consider the case 2

1

1
2p

p
= =  and 2.k = Then (15) can be written as 

2 2 2 2 2 2

2 2 2 2

2 2 2 2
,

( 2) ( 2)

a b a b
a b

a b a b

   

   

+ + + +
= =

+ + + + + +
                                 (16) 

where 
1

2. 


= +   

At first, we consider the case a = b. The system of equations (16) is reduced to the 

polynomial equation: 
3 22 ( 2) ( 2) 2 0a a a   − + + + − = .                                       (17) 
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Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1. 

Consequently, one gets 
2 22 ( 2 2) 2 0.a a − + − + =  

For any value of the parameter τ the last quadratic equation has two solutions. 

Theorem 2. Let 
1

J
J

 


= + .Then for the model (5) on the the Cayley tree of order 

two the following assertion holds: 

1. For any value of the parameter τ there are precisely three GGMs 

associated with a 2-periodic boundary law. 

Let k = 3: In this case, in order to find 2-periodic boundary law we will consider 

the following equation: 
4 3 1 0a a a − + − =                                               (18) 

where 
( 2)

.
2

 


+
=  

Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1. 

Consequently, one gets 
2( 1)( 1) 0.a a a+ − + =  

For any value of the parameter τ the last quadratic equation has two solutions. 

Theorem 3. Let 
1

J
J

 


= + . Then for the model (5) on the the Cayley tree of 

order three the following assertion holds: 

1. For any value of the parameter τ there are precisely three GGMs 

associated with a 2-periodic boundary law. 

It is important to consider Gradient Gibbs measures associated with a 4-periodic 

boundary law for the model (5). The following theorem gives us a full description of 

Gradient Gibbs measures associated with a 4-periodic boundary law. 

Theorem 4. Let  
1

J
J

 


= + , (1) 3.22cr  .Then for Gradient Gibbs measures 

associated with a 4-periodic boundary law for the model (5) on the Cayley tree of 

order two the following statements hold: 

1. If  (1)

cr  , then there are three GGMs associated with a 4-periodic 

boundary law. 

2. If (1)

cr = , then there are five such GGMs. 

3. If  (1)

cr  ,  then there are exactly seven such GGMs. In each case one of 

solutions is a = b = 1. 

Proof. Now we consider the case a 6= b. Then the system of equations (16) can be 

written as 

{

3 2 2 2 2( 2) 2 2a ab a a b   + + + = + + ;

3 2 2 2 2( 2) 2 2.b a b b b a   + + + = + +
                                      (19) 
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Now we subtract the second equation of (19) from the first one and get 
3 3 2 2( ) ( 2)( ) ( 2)( ).a b ab a b a b a b   − − − + + − = − −  

Since a ≠ b, both sides can be divided by a - b and one gets 
2 2 ( 2) ( 2)( ).a b a b   + + + = − +                                           (20) 

By adding the second and first equations of (19), we have 
2 2 2 2( )( ) ( 2)( ) ( 2)( ) 4a b a b a b a b   + + + + + = + + +                             (21) 

Let a+b = x and ab = y. By using (20) and (21) one gets a new system of equations 

with respect to x and y that is equivalent to (19): 

{

2 2 ( 2) ( 2)x y x   − + + = −

3 22 ( 2) ( 2)( 2 ) 4x xy x x y   − + + = + − +
                                 (22) 

In order to find the number of solutions of the last system we can consider the 

following quadratic equation with respect to x: 
2 2 2 2 2( 2) ( 4) ( 2) 4 0.x x     − − − + + − =                               (23) 

It is easy to check that 
2 2 6 5 4 3 2

1

( 4) ( 2)( 2 8 24 16 16)

2 ( 2)
x

        

 

− + − + − − − +
=

−
 

and 
2 2 6 5 4 3 2

2

( 4) ( 2)( 2 8 24 16 16)

2 ( 2)
x

        

 

− − − + − − − +
=

−
 

are solutions to the equation (23). Put 6 5 4 3 2( ) 2 8 24 16 16P      = + − − − + . From τ 

> 2 it is sufficient to find only positive roots of P(τ). By Descartes’ theorem (e.g. [12]) 

P(τ) has at most two positive roots. Now we find the first derivative of P(τ) and get 
4 3 2( ) 2 (3 5 16 36 16)Q      = + − − −  

By Descartes’ theorem Q(τ) has at most one positive root. Using Q(2) < 0 and Q(3) 

> 0 i.e., by Intermediate Value Theorem we can conclude Q(τ) has at least one root in 

the segment [2; 3]. 

On the other hand, P(0) > 0 and P(1) < 0 i.e., by Intermediate Value Theorem P(τ) 

has one root in the segment [0; 1]: Hence, P(τ) has exactly one positive root which 

belongs to the interval (2, ) . Let (1)( 3.22)cr cr   be the positive root of the polynomial. 

Consequently, we can conclude that if (1)2 cr    then the system of equations (22) has 

not any positive solution. Let  (1)

cr = , then the system (22) has exactly one positive 

root. For the case  (1)

cr  , then (22) has exactly two positive roots if we can show 

1 0x  . Namely, after short calculations, (1)

cr   then we can 

show the inequality 
2 2 6 5 4 3 2( 4) ( 2)( 2 8 24 16 16)

0
2 ( 2)

        

 

− − − + − − − +


−
 

is equivalent to the inequality 2 2 2 0 + −  . 
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For the case (1)

cr  , from ia b x+ =  and iab y=  ( {1,2}i ) after short calculations, 

we have two quadratic equations respectively to 1x  and 2x : 

2 2
2 1

1

( 2 1) 2
0

2

x
a x a

   − − − −
− − =  

and 
2 2

2 2
2

( 2 1) 2
0.

2

x
a x a

   − − − −
− − =  

The discriminants are 
6 5 4 2 2 6 5 4 3 2

1,2

3 2 20 16 8 (3 2 2) ( 2)( 2 8 24 16 16))
( ) .

2 ( 2)
D

            


 

− − + +  − − − + − − − +
=

−

 

Now we find positive zeroes of 
6 5 4 2 2 6 5 4 3 23 2 20 16 8 (3 2 2) ( 2)( 2 8 24 16 16)) 0.            − − + +  − − − + − − − + =  

A solution to the last equation is also the solution to the following equation: 
8 7 6 5 4 3 23 16 4 120 176 128 112 32 16 0.       + + + − − + + + =  

By Descartes’ theorem 8 7 6 5 4 3 2( ) 3 16 4 120 176 128 112 32 16R         = + + + − − + + +  

have at most two positive roots. Since R(0) > 0, R(1) < 0; R(2) > 0 and lim ( )R



→

= +  we 

can conclude they are not in the interval (2, ) . Consequently, 1,2 ( ) 0D    for any value 

of (1)( , )cr    

Finally, we consider the case (1)

cr = . From above, it is sufficient to solve the 

following equation: 
24 2 ( 2) ( 1)( 2)( 3) 0.a a     − + − + + − =  

Its discriminant is 
2( ) 4 ( 2)(5 6 24).D     = + − −  

It’s easy to check (1)( ) 0crD   , thus there are two positive solutions to (19). 

Theorem 5. Let 
1

J
J

 


= + , (2) 2.26cr  .Then for the parameter (2)(2, )cr  there 

are not any Gradient Gibbs measures associated with a 4-periodic boundary law 

satisfying the equality a ≠ b for the model (5) on the Cayley tree of order three. 

Proof. Now we consider the case a ≠ b. Then the system of equations (16) can be 

written as 

{

4 3 2 3 3( 2) 2 2;a ab a a b   + + + = + +

4 3 2 3 3( 2) 2 2.b a b b b a   + + + = + +
                                       (24) 

In this case, applying the same solution above one gets system of equations with 

respect to x and y that is equivalent to (24): 

{

4 2 33 ( 2) ( 2)( 3 ) 4x x y x x xy   − + + = + − +

3 23 ( 2) ( 2)( )x xy x y   − + + = − −
                              (25) 
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In order to find the number of solutions of the last system we can consider the 

following quartic equation with respect to x: 
4 2 3 4 3 2( 2) ( 2)( 2) ( 6 8 6) 2 ( 2) 0.x x x         − − − + + + + − + − =                 (26) 

Finding the first and second derivatives of  
4 2 3 4 3 2( , ) ( 2) ( 2)( 2) ( 6 8 6) 2 ( 2) 0R x x x x          = − − − + + + + − + − =  we get following 

two polynomials: 
3 2 2 4 3 2( , ) 4 ( 2) 3 ( 2)( 2) 6 8 6S x x x        = − − − + + + + −  

2 2( , ) 12 ( 2) 6 ( 2)( 2)T x x x     = − − − +  

It is clear that 0 and 
( 2)

2

  +
 are solutions of the equation  ( , ) 0.T x  = Now we find 

the value of S(x; τ) at the point 
( 2)

2
x

  +
=  and get: 

8
7 5 4 3 2( ) 4 5 6 8 8

4
W


     = − − + + + + −  

It is easy to check that W(0)<0, W(2)>0 and W(3)<0. Let  ( 2.26)cr   be the 

solution of the equation W(τ) = 0: Then for any value of (2, )cr   there exists only one 

intersection point of S(x; τ) with the negative x-axis. Consequently, using the fact R(0; 

τ) > 0 we can conclude there would be no positive roots of the equation R(x; τ) = 0: 

This completes the proof. 
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