JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30-June)

ON GRADIENT GIBBS MEASURES WITH 4-PERIODIC BOUNDARY LAWS OF MODEL OF SOS TYPE ON THE CAYLEY TREE OF ORDER TWO AND THREE

Ilyasova R. A
Karimova S. A
National University of Uzbekistan, Tashkent, Uzbekistan e-mail ilyasova.risolat@mail.ru, sevinch0603@mail.ru

We consider Gradient Gibbs measures corresponding to a periodic boundary law for a generalized SOS model with spin values from a countable set, on Cayley trees. On the Cayley tree, detailed information on Gradient Gibbs measures for models of SOS model are given in [3, 8, 11, 16]. Investigating these works for the generalized SOS model, in this paper the problem of finding Gradient Gibbs measures which correspond to periodic boundary laws is reduced to a functional equation.

By solving this equation all Gradient Gibbs measures with 4 periodic boundary laws are found.

Keywords: Generalized SOS model, specification, potential, hamiltonian, boundary law, spin values, Cayley tree, gradient Gibbs measure. Mathematics Subject Classification (2010):

INTRODUCTION

The gradient Gibbs measure is a probability measure on the space of gradient fields defined on a manifold. It is often used in statistical mechanics to describe the equilibrium states of a system. The gradient Gibbs measure is derived from the Gibbs measure, which is a probability measure on the space of field configurations. The critical difference is that the gradient Gibbs measure focuses on the gradients of the fields rather than the fields themselves (e.g. [7]). Specifically, the Gradient Gibbs measure is defined on the set of spin configurations of a system on a Cayley tree. The Gradient Gibbs measure on a Cayley tree assigns a probability to each possible spin configuration based on the energy of that configuration. The energy of a spin configuration is determined by the interactions between neighboring spins. In the case of a Cayley tree, each spin is coupled to its nearest neighbors along the edges of the tree (see [5]).

Mathematically, the gradient Gibbs measure assigns a probability to each possible configuration of a gradient field on the Cayley tree, based on an energy function. The energy function typically represents the interactions between the gradients of a scalar field or a vector field. The probability of a configuration is proportional to the exponential of the negative energy of that configuration (e.g. [1, 4, 5, 12, 14]).

The study of random field ξ_{x} from a lattice graph (e.g., \square^{d} or a Cayley tree Γ^{k}) to a measure space (E, E) is a central component of ergodic theory and statistical physics. In many classical models from physics (e.g., the Ising model, the Potts model, the SOS
model), E is a finite set (i.e., with a finite underlying measure λ), and ξ_{x} has a physical interpretation as the spin of a particle at location x in a crystal lattice (detail in $[1,2,3$, $6,7,8,9,10,14,15])$.

Let us give basic definitions and some known facts related to (gradient) Gibbs measures. The Cayley tree $\Gamma^{k}=(V, L)$ of order $\mathrm{k} \geq 1$ is an infinite tree, i.e. connected and undirected graph without cycles, each vertex of which has exactly $\mathrm{k}+1$ edges. Here V is the set of vertices of Γ^{k} and L is the set of its edges.

Consider models where the spin takes values in the set $\Phi \subseteq \square_{\infty}^{+}$, and is assigned to the vertices of the tree. Let $\Omega_{A}=\Phi^{A}$ be the set of all configurations on A and $\Omega:=\Phi^{V}$. A partial order \leq on Ω defined pointwise by stipulating that $\sigma 1 \leq \sigma 2$ if and only if $\sigma 1(\mathrm{x}) \leq$ $\sigma 2(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{V}$. Thus $(\Omega ; \leq)$ is a poset, and whenever we consider Ω as a poset then it will always be with respect to this partial order. The poset Ω is complete. Also, Ω can be considered as a metric space with respect to the metric $\rho: \Omega \times \Omega \rightarrow \square^{+}$given by

$$
\rho\left(\left\{\sigma\left(x_{n}\right)\right\}_{x_{n} \in V},\left\{\sigma^{\prime}\left(x_{n}\right)\right\}_{x_{n} \in V}\right)=\sum_{n \geq 0} 2^{-n} \mathrm{X}_{\sigma\left(x_{n}\right) \neq \sigma^{\prime}\left(x_{n}\right)},
$$

where $V=\left\{x_{0}, x_{1}, x_{2}, \ldots.\right\}$ and X_{A} is the indicator function.
We denote by N the set of all finite subsets of V . For each $A \in V$ let $\pi_{A}: \Omega \rightarrow \Phi^{A}$ be given by $\pi_{A}\left(\sigma_{x}\right)_{x \in V}=\left(\sigma_{x}\right)_{x \in A}$ and let $\mathrm{C}_{A}=\pi_{A}^{-1}\left(\mathrm{P}\left(\Phi^{A}\right)\right)$. Let $\mathrm{C}=\bigcup_{A \in \mathrm{~N}} \mathrm{C}_{A}$ and F is the smallest sigma field containing C. Write $T_{\Lambda}=F_{V \backslash \Lambda}$ and T for the tail- σ-algebra, i.e., intersection of T_{Λ} over all finite subsets Λ of L : The sets in T are called tailmeasurable sets.

Definition 1. [5] Let $P_{\Lambda}: \Omega \rightarrow \square:=\square \cup\{-\infty, \infty\}$ be F_{Λ}-measurable mapping for all $\Lambda \epsilon$ N , then the collection $P=\left\{P_{\Lambda}\right\}_{\Lambda \in \mathrm{N}}$ is called a potential. Also, the following expression

$$
\begin{equation*}
H_{\Delta, P}(\sigma) \stackrel{\operatorname{def}}{=} \sum_{\Delta \cap \Lambda \neq \varnothing, \Lambda \in \mathrm{N}} P_{\Delta}(\sigma), \quad \forall \sigma \in \Omega . \tag{1}
\end{equation*}
$$

is called Hamiltonian H associated with the potential P.
For a fixed inverse temperature $\beta>0$, the Gibbs specification is determined by a family of probability kernels $\zeta=\left(\zeta_{\Lambda}\right)_{\Lambda \in \mathrm{N}}$ defined on $\Omega_{\Lambda} \times \mathrm{F}_{\Lambda^{c}}$ by the Boltzmann-Gibbs weights

$$
\begin{equation*}
\zeta_{\Lambda}\left(\sigma_{\Lambda} \mid \omega\right)=\frac{1}{\mathbf{Z}_{\Lambda}^{\omega}} e^{-\beta H_{\Lambda, p}^{\omega}\left(\sigma_{\Lambda} \omega\right)} \tag{2}
\end{equation*}
$$

where $\mathbf{Z}_{\Lambda}^{\omega}=\sum_{\sigma \in \Omega_{\Lambda}} e^{-\beta H_{\Lambda, p}^{\infty}\left(\sigma_{\Lambda}\right)}$ is the partition function, related to free energy. From [5], the family of mappings $\left\{\zeta_{\Lambda}(\sigma \mid \omega)\right\}_{\Lambda \in N}$ is the family of proper F_{Λ} - measurable quasi-probability kernels. Thus, the collection $V=\left\{\zeta_{\Lambda}\right\}_{\Lambda \in \mathrm{N}}$ will be called an Fspecification if $\zeta_{\Delta}=\zeta_{\Delta} \zeta_{\Lambda}$ whenever $\Lambda, \Delta \in \mathrm{N}$ with $\Lambda \subseteq \Delta$. Let $\mathrm{V}=\left\{\zeta_{\Lambda}\right\}_{\Lambda \in \mathrm{N}}$ be an F-
specification; then a probability measure $\mu \in P(F)$ is called a Gibbs measure with specification V if $\mu=\mu \zeta_{\Lambda}$ for each $\Lambda \in \mathrm{N}$.

1 Gradient Gibbs measure
For any configuration $\omega=(\omega(x))_{x \in V} \in \square^{V}$ and edge $e=\langle x, y\rangle$ of \vec{L} (oriented) the difference along the edge e is given by $\nabla \omega_{e}=\omega_{y}-\omega_{x}$ and $\nabla \omega$ is called the gradient field of ω. The gradient spin variables are now defined by $\eta_{\langle x, y\rangle}=\omega_{y}-\omega_{x}$ for each $\langle x, y\rangle$. The space of gradient configurations is denoted by Ω^{∇}. The measurable structure on the space Ω^{∇} is given by σ-algebra

$$
\mathrm{F}^{\nabla}:=\sigma\left(\left\{\eta_{e} \mid e \in \vec{L}\right\}\right) .
$$

Note that F^{∇} is the subset of F containing those sets that are invariant under translation $\omega \rightarrow \omega+c$ for $c \in E$. Similarly, we define

$$
\mathrm{T}_{\Lambda}^{\nabla}=\mathrm{T}_{\Lambda} \cap \mathrm{F}^{\nabla}, \mathrm{F}_{\Lambda}^{\nabla}=\mathrm{F}_{\Lambda} \cap \mathrm{F}^{\nabla}
$$

For nearest-neighboring (n.n.) interaction potential $\Phi=\left(\Phi_{b}\right)_{b}$, where $b=\langle x, y\rangle$ is an edge, define symmetric transfer matrices Q_{b} by

$$
Q_{b}\left(\omega_{b}\right)=e^{-\left(\Phi_{b}\left(\omega_{b}\right)+||x||^{-1} \Phi_{|x|}\left(\omega_{x}\right)+\left|a_{y}\right|^{-1} \Phi_{|y|}\left(\omega_{y}\right)\right)}
$$

Define the Markov (Gibbsian) specification as

$$
\gamma_{\Lambda}^{\Phi}\left(\sigma_{\Lambda}=\omega_{\Lambda} \mid \omega\right)=\left(Z_{\Lambda}^{\Phi}\right)(\omega)^{-1} \prod_{b \cap \Lambda \neq 0} Q_{b}\left(\omega_{b}\right) .
$$

If for any bond $b=\langle x, y\rangle$ the transfer operator $Q_{b}\left(\omega_{b}\right)$ is a function of gradient spin variable $\zeta_{b}=\omega_{y}-\omega_{x}$ then the underlying potential Φ is called a gradient interaction potential. Note that for all $A \in \mathrm{~F}^{\nabla}$, the kernels $\gamma_{\Lambda}^{\Phi}(A, \omega)$ are F^{∇} measurable functions of ω, it follows that the kernel sends a given measure μ on $\left(\Omega, \mathrm{F}^{\nabla}\right)$ to another measure $\mu \gamma_{\Lambda}^{\Phi}$ on $\left(\Omega, \mathrm{F}^{\nabla}\right)$. A measure μ on $\left(\Omega, \mathrm{F}^{\nabla}\right)$ is called a gradient Gibbs measure if it satisfies the equality $\mu \gamma_{\Lambda}^{\Phi}=\mu$ (detail in [10, 11, 13]).

Note that, if μ is a Gibbs measure on (Ω, F), then its restriction to F^{∇} is a gradient Gibbs measure. A boundary law is called q-periodic if $l_{x y}(i+q)=l_{x y}(i)$ for every oriented edge $\langle x, y\rangle \in \vec{L}$ and each $i \in \square$.

It is known that there is a one-to-one correspondence between boundary laws and tree indexed Markov chains if the boundary laws are normalisable in the sense of Zachary [15]:

Definition 2. (Normalisable boundary laws). A boundary law 1 is said to be normalisable if and only if

$$
\sum_{\omega_{x} \in \mathbb{\square}}\left(\prod_{z \in \partial x x} \sum_{\omega_{z} \in \mathrm{D}} Q_{z x}\left(\omega_{x}, \omega_{z}\right) l_{z x}\left(\omega_{z}\right)\right)<\infty
$$

for any $x \in V$.
The correspondence now reads the following:

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30- June)

Theorem 1. (Theorem 3.2 in [15]). For any Markov specification γ with associated family of transfer matrices $\left(Q_{b}\right)_{b \in L}$ we have
1.Each normalisable boundary law $\left(l_{x y}\right)_{x, y}$ for $\left(Q_{b}\right)_{b \in L}$ defines a unique treeindexed Markov chain $\mu \in \mathrm{G}(\gamma)$ via the equation given for any connected set $\Lambda \in \mathrm{S}$

$$
\begin{equation*}
\mu\left(\sigma_{\Lambda \cup \partial \Lambda}=\omega_{\Lambda \cup \partial \Lambda}\right)=\left(Z_{\Lambda}\right)^{-1} \prod_{y \in \partial \Lambda} l_{y y_{\Lambda}}\left(\omega_{y}\right) \prod_{b \cap \Lambda \neq \varnothing} Q_{b}\left(\omega_{b}\right) \tag{3}
\end{equation*}
$$

where for any $y \in \partial \Lambda, y_{\Lambda}$ denotes the unique n.n. of y in Λ.
2. Conversely, every tree-indexed Markov chain $\mu \in \mathrm{G}(\gamma)$ admits a representation of the form (3.15) in terms of a normalisable boundary law (unique up to a constant positive factor).

The Markov chain μ defined in (3) has the transition probabilities

$$
\begin{equation*}
P_{x y}(i, j)=\mu\left(\sigma_{y}=j \mid \sigma_{x}=i\right)=\frac{l_{y x}(j) Q_{y x}(j, i)}{\sum_{s} l_{y x}(s) Q_{y x}(s, i)} \tag{4}
\end{equation*}
$$

The expressions (4) may exist even in situations where the underlying boundary law $\left(l_{x y}\right)_{x, y}$ is not normalisable. However, the Markov chain given by (4), in general, does not have an invariant probability measure. Therefore in [8]; [9]; [10]; [11] some nonnormalisable boundary laws are used to give gradient Gibbs measures.

Now we give some results of above-mentioned paper. Consider a model on Cayley tree $\Gamma^{k}=(V, \vec{L})$, where the spin takes values in the set of all integer numbers \square. The set of all configurations is $\Omega:=\square^{V}$.

Now we consider the following Hamiltonian:

$$
\begin{equation*}
H(\sigma)=-J \sum_{\langle x, y\rangle} \alpha\left(\left|\sigma_{x}-\sigma_{y}\right|\right)\left|\sigma_{x}-\sigma_{y}\right|, \tag{5}
\end{equation*}
$$

where
$\alpha(|m|)=\left\{\begin{array}{ll}p_{1}, & \text { if } \$ \mathrm{~m} \in 2 \square \$ \\ p_{2}, & \text { if } \$ \mathrm{~m} \in 2 \square+1 \$\end{array}, p_{1}, p_{2} \in \square^{+}\right.$.
Note that if $p_{1}=p_{2}$ then the considered model is called SOS model.
For the Hamiltonian (5) the transfer operator is defined by
$Q(i, j)=e^{-J \beta \alpha(i-j)|i-j|}$,
where $\beta>0$ is the inverse temperature and $J \in \square$.
Also, the boundary law equation of the Hamiltonian can be written as:

$$
\begin{equation*}
z_{i}=\left(\frac{Q(i, 0)+\sum_{j \in Z_{0}} Q(i, j) z_{j}}{Q(0,0)+\sum_{j \in Z_{0}} Q(0, j) z_{j}}\right)^{k} . \tag{6}
\end{equation*}
$$

Put $\theta:=\exp (-J \beta)<1$. For translation invariant boundary law, the transfer operator Q reads $Q(i-j)=\theta^{i-j \mid}$ for any $i, j \in \square$. If $\theta:=e^{-J \beta}<1$ then we can write the equation (6) as

$$
\begin{equation*}
z_{i}=\left(\frac{\theta^{\alpha(i) \mid) \mid}+\sum_{j \in Z_{0}} \theta^{\alpha(i-j)|i-j|} z_{j}}{1+\sum_{j \in Z_{0}} \theta^{\alpha(j|j| j \mid} z_{j}}\right)^{k}, i \in \square_{0}:=\square, \quad\{0\} . \tag{7}
\end{equation*}
$$

Let $\left\{z_{i}\right\}_{i \in \square}$ be q-periodic sequence, i.e. $z_{i}=z_{i+q}$ for all $i \in \square$.

Proposition 1. Let $\left\{z_{i}\right\}_{i \in \square}$ be q-periodic sequence. Then finding q-periodic solutions
to the system (7) is equivalent to solving the system of equations (8).
Proof. To prove the Proposition, it is sufficient to show $z_{i}=z_{q+i}$ for all $i \in\{1,2, \ldots, q-1, q\}$. Since $z_{0}=0$, for a fixed $i_{0} \in \square$, the numerator of the fraction in (7) can be written as

$$
\theta^{\alpha\left(i_{0}\right)\left|i_{0}\right|}+\sum_{j \in \Gamma_{0}} \theta^{\alpha\left(i_{0}-j\right)\left|i_{0}-j\right|} z_{j}=\sum_{j \in \square} \theta^{\alpha\left(\mid i_{0}-j\right)\left|i_{0}-j\right|} z_{j} .
$$

Also, it can be rewritten as

$$
\begin{equation*}
\sum_{j \in \mathbb{D}} \theta^{\alpha\left(i_{i_{0}}-j\right)\left|i_{0}-j\right|} z_{j}=\ldots+\theta^{2 p_{1}} z_{i_{0}-2}+\theta^{p_{2}} z_{i_{0}-1}+z_{i_{0}}+\theta^{p_{2}} z_{i_{0}+1}+\theta^{2 p_{1}} z_{i_{0}+2}+\ldots \tag{9}
\end{equation*}
$$

Similarly, for $i_{0}+q$ we have

$$
\begin{equation*}
\sum_{j \in I} \theta^{\alpha\left(i_{i}+q-j\right)\left|i_{0}+q-j\right|} z_{j}=\ldots+\theta^{2 p_{1}} z_{i_{0}+q-2}+\theta^{p_{2}} z_{i_{0}+q-1}+z_{i_{0}+q}+\theta^{p_{2}} z_{i_{0}+q+1}+\theta^{2 p_{1}} z_{i_{0}+q+2}+\ldots \tag{10}
\end{equation*}
$$

If we change z_{k+q} in (10) to z_{k} for all $k \in \square$ then we obtain (9). Namely, we have proved

$$
z_{i_{0}}=\left(\frac{\theta^{i_{0} \alpha\left(i_{0} \mid\right)}+\sum_{j \in Z_{0}} \theta^{\alpha\left(\left|i_{0}-j\right|\right) i_{0}-j \mid} z_{j}}{1+\sum_{j \in Z_{0}} \theta^{\alpha(j \mid)|j|} z_{j}}\right)^{k}=\left(\frac{\theta^{\left(i_{0}+q\right) \alpha\left(i_{0}+q \mid\right)}+\sum_{j \in Z_{0}} \theta^{\alpha\left(\left|i_{0}+q-j\right|\left|i_{0}+q-j\right|\right.} z_{j}}{1+\sum_{j \in Z_{0}} \theta^{\alpha(j \mid)|j|} z_{j}}=z_{i_{0}+q} .\right.
$$

Let $u_{i}=u_{0} \sqrt[k]{z_{i}}$ for some $u_{0}>0$. Then using the Proposition 1 we obtain

$$
u_{i}=\frac{\ldots+\theta^{3 p_{2}} u_{i-3}^{k}+\theta^{2 p_{1}} u_{i-2}^{k}+\theta^{p_{2}} u_{i-1}^{k}+u_{i}^{k}+\theta^{p_{2}} u_{i+1}^{k}+\theta^{2 p_{1}} u_{i+2}^{k}+\theta^{3 p_{2}} u_{i+3}^{k}+\ldots}{\ldots+\theta^{3 p_{2}} u_{-3}^{k}+\theta^{2 p_{1}} u_{-2}^{k}+\theta^{p_{2}} u_{-1}^{k}+u_{0}^{k}+\theta^{p_{2}} u_{1}^{k}+\theta^{2 p_{1}} u_{2}^{k}+\theta^{3 p_{2}} u_{3}^{k}+\ldots} .
$$

We can rewrite the last system of equations in the following form:

$$
u_{i}=\frac{\sum_{j=1}^{\infty} \theta^{2 p_{1} j} u_{i-2 j}^{k}+\sum_{j=1}^{\infty} \theta^{(2 j-1) p_{2}} u_{i-2 j+1}^{k}+u_{i}^{k}+\sum_{j=1}^{\infty} \theta^{(2 j-1) p_{2}} u_{i+2 j-1}^{k}+\sum_{j=1}^{\infty} \theta^{2 p_{1} j} u_{i+2 j}^{k}}{\sum_{j=1}^{\infty} \theta^{2 p_{1} j} u_{-2 j}^{k}+\sum_{j=1}^{\infty} \theta^{(2 j-1) p_{2}} u_{-2 j+1}^{k}+u_{0}^{k}+\sum_{j=1}^{\infty} \theta^{(2 j-1) p_{2}} u_{2 j-1}^{k}+\sum_{j=1}^{\infty} \theta^{2 p_{1}, j} u_{2 j}^{k}}, \quad \text { where } \quad i \in \square .
$$

(11)

2 Main results
In this section, we find periodic solutions (defined in [16]) to (7) which correspond to periodic boundary condition. Namely, for all $m \in Z$ we consider the following sequence:

$$
u_{n}=\left\{\begin{array}{l}
1, i f n=2 m ; \tag{12}\\
a, i f n=4 m-1 ; \\
b, i f n=4 m+1,
\end{array}\right.
$$

where a and b are some positive numbers.
By Proposition 1, finding solutions that are formed in (12) to (7) is equivalent to solving the following system of equations:

$$
\left\{\begin{array}{l}
a=\frac{\ldots+\theta^{4 p_{1}} a^{k}+\theta^{3 p_{2}}+\theta^{2 p_{1}} b^{k}+\theta^{p_{2}}+a^{k}+\theta^{p_{2}}+\theta^{2 p_{1}} b^{k}+\theta^{3 p_{1}}+\theta^{4 p_{1}} a^{k}+\ldots}{\ldots+\theta^{3 p_{2}} b^{k}+\theta^{2 p_{1}}+\theta^{p_{2}} a^{k}+1+\theta^{p_{2}} b^{k}+\theta^{2 p_{1}}+\theta^{3 p_{2}} a^{k}+\theta^{4 p_{1}}+\ldots} \tag{13}\\
b=\frac{\ldots+\theta^{4 p_{1}} b^{k}+\theta^{3 p_{2}}+\theta^{2 p_{1}} a^{k}+\theta^{p_{2}}+b^{k}+\theta^{p_{2}}+\theta^{2 p_{1}} a^{k}+\theta^{3 p_{2}}+\theta^{4 p_{1}} b^{k}+\ldots}{\ldots+\theta^{4 p_{1}}+\theta^{3 p_{2}} b^{k}+\theta^{2 p_{1}}+\theta^{p_{2}} a^{k}+1+\theta^{p_{2}} b^{k}+\theta^{2 p_{1}}+\theta^{3 p_{2}} a^{k}+\theta^{4 p_{1}}+\ldots} . . .
\end{array}\right.
$$

Namely,

$$
\left\{\begin{array}{l}
a=\frac{2\left(\theta^{p_{2}}+\theta^{3 p_{2}}+\ldots\right)+\left(1+2 \theta^{4 p_{1}}+2 \theta^{8 p_{1}}+\ldots\right) a^{k}+2\left(\theta^{2 p_{1}}+\theta^{6 p_{1}}+\ldots\right) b^{k}}{1+2 \theta^{2 p_{1}}+2 \theta^{4 p_{1}}+\ldots+\left(\theta^{p_{2}}+\theta^{3 p_{2}}+\ldots\right)\left(a^{k}+b^{k}\right)} ; \tag{14}\\
b=\frac{2\left(\theta^{p_{2}}+\theta^{3 p_{2}}+\ldots\right)+\left(1+2 \theta^{4 p_{1}}+2 \theta^{8 p_{1}}+\ldots\right) b^{k}+2\left(\theta^{2 p_{1}}+\theta^{6 p_{1}}+\ldots\right) a^{k}}{1+2 \theta^{2 p_{1}}+2 \theta^{4 p_{1}}+\ldots+\left(\theta^{p_{2}}+\theta^{3 p_{2}}+\ldots\right)\left(a^{k}+b^{k}\right)}
\end{array}\right.
$$

Taking into account $\theta<1$ one writes the last system of equations as follows:

$$
\begin{equation*}
a=\frac{\frac{2 \theta^{p_{2}}}{1-\theta^{2 p_{2}}}+\frac{1+\theta^{4 p_{1}}}{1-\theta^{4 p_{1}}} a^{k}+\frac{2 \theta^{2 p_{1}}}{1-\theta^{4 p_{1}}} b^{k}}{\frac{1+\theta^{2 p_{1}}}{1-\theta^{2 p_{1}}}+\frac{\theta^{p_{2}}}{1-\theta^{2 p_{2}}}\left(a^{k}+b^{k}\right)}, \quad b=\frac{\frac{2 \theta^{p_{2}}}{1-\theta^{2 p_{2}}}+\frac{1+\theta^{4 p_{1}}}{1-\theta^{4 p_{1}}} b^{k}+\frac{2 \theta^{2 p_{1}}}{1-\theta^{4 p_{1}}} a^{k}}{\frac{1+\theta^{2 p_{1}}}{1-\theta^{2 p_{1}}}+\frac{\theta^{p_{2}}}{1-\theta^{2 p_{2}}}\left(a^{k}+b^{k}\right)} . \tag{15}
\end{equation*}
$$

For all $k \in \square$ and $p_{1}, p_{2} \in \square$, the analysis of (15) is so difficult and that's why we consider the case $\frac{1}{p_{1}}=p_{2}=2$ and $k=2$. Then (15) can be written as

$$
\begin{equation*}
a=\frac{\tau^{2} a^{2}+2 \tau b^{2}+2}{a^{2}+b^{2}+\tau(\tau+2)}, \quad b=\frac{2 \tau a^{2}+\tau^{2} b^{2}+2}{a^{2}+b^{2}+\tau(\tau+2)} \tag{16}
\end{equation*}
$$

where $\tau=\theta+\frac{1}{\theta}>2$.
At first, we consider the case $a=b$. The system of equations (16) is reduced to the polynomial equation:

$$
\begin{equation*}
2 a^{3}-\tau(\tau+2) a^{2}+\tau(\tau+2) a-2=0 \tag{17}
\end{equation*}
$$

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30- June)

Since the last equation has a solution $\mathrm{a}=1$, we divide both sides of (17) by a-1. Consequently, one gets

$$
2 a^{2}-\left(\tau^{2}+2 \tau-2\right) a+2=0
$$

For any value of the parameter τ the last quadratic equation has two solutions.
Theorem 2. Let $\tau=J \beta+\frac{1}{J \beta}$.Then for the model (5) on the the Cayley tree of order two the following assertion holds:

1. For any value of the parameter τ there are precisely three GGMs associated with a 2-periodic boundary law.

Let $\mathrm{k}=3$: In this case, in order to find 2-periodic boundary law we will consider the following equation:

$$
\begin{align*}
& a^{4}-\psi a^{3}+\psi a-1=0 \tag{18}\\
& \text { where } \psi=\frac{\tau(\tau+2)}{2} .
\end{align*}
$$

Since the last equation has a solution $\mathrm{a}=1$, we divide both sides of (17) by a-1. Consequently, one gets
$(a+1)\left(a^{2}-\psi a+1\right)=0$.
For any value of the parameter τ the last quadratic equation has two solutions.
Theorem 3. Let $\tau=J \beta+\frac{1}{J \beta}$. Then for the model (5) on the the Cayley tree of order three the following assertion holds:

1. For any value of the parameter τ there are precisely three GGMs associated with a 2-periodic boundary law.

It is important to consider Gradient Gibbs measures associated with a 4-periodic boundary law for the model (5). The following theorem gives us a full description of Gradient Gibbs measures associated with a 4-periodic boundary law.

Theorem 4. Let $\tau=J \beta+\frac{1}{J \beta}, \tau_{c r}^{(1)} \approx 3.22$.Then for Gradient Gibbs measures associated with a 4-periodic boundary law for the model (5) on the Cayley tree of order two the following statements hold:

1. If $\tau<\tau_{c r}^{(1)}$, then there are three GGMs associated with a 4-periodic boundary law.
2. If $\tau=\tau_{c r}^{(1)}$, then there are five such GGMs.
3. If $\tau>\tau_{c r}^{(1)}$, then there are exactly seven such GGMs. In each case one of solutions is $\mathrm{a}=\mathrm{b}=1$.

Proof. Now we consider the case a $6=\mathrm{b}$. Then the system of equations (16) can be written as

$$
\left\{\begin{array}{l}
a^{3}+a b^{2}+\tau(\tau+2) a=\tau^{2} a^{2}+2 \tau b^{2}+2 ; \tag{19}\\
b^{3}+a^{2} b+\tau(\tau+2) b=\tau^{2} b^{2}+2 \tau a^{2}+2 .
\end{array}\right.
$$

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30- June)

Now we subtract the second equation of (19) from the first one and get $a^{3}-b^{3}-a b(a-b)+\tau(\tau+2)(a-b)=\tau(\tau-2)\left(a^{2}-b^{2}\right)$.
Since $\mathrm{a} \neq \mathrm{b}$, both sides can be divided by $\mathrm{a}-\mathrm{b}$ and one gets
$a^{2}+b^{2}+\tau(\tau+2)=\tau(\tau-2)(a+b)$.
By adding the second and first equations of (19), we have
$(a+b)\left(a^{2}+b^{2}\right)+\tau(\tau+2)(a+b)=\tau(\tau+2)\left(a^{2}+b^{2}\right)+4$
Let $\mathrm{a}+\mathrm{b}=\mathrm{x}$ and $\mathrm{ab}=\mathrm{y}$. By using (20) and (21) one gets a new system of equations with respect to x and y that is equivalent to (19):

$$
\left\{\begin{array}{c}
x^{2}-2 y+\tau(\tau+2)=\tau(\tau-2) x \tag{22}\\
x^{3}-2 x y+\tau(\tau+2) x=\tau(\tau+2)\left(x^{2}-2 y\right)+4
\end{array}\right.
$$

In order to find the number of solutions of the last system we can consider the following quadratic equation with respect to x :

$$
\begin{equation*}
\tau(\tau-2) x^{2}-\tau^{2}\left(\tau^{2}-4\right) x+\tau^{2}(\tau+2)^{2}-4=0 . \tag{23}
\end{equation*}
$$

It is easy to check that

$$
x_{1}=\frac{\tau^{2}\left(\tau^{2}-4\right)+\sqrt{\tau(\tau-2)\left(\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16\right)}}{2 \tau(\tau-2)}
$$

and

$$
x_{2}=\frac{\tau^{2}\left(\tau^{2}-4\right)-\sqrt{\tau(\tau-2)\left(\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16\right)}}{2 \tau(\tau-2)}
$$

are solutions to the equation (23). Put $P(\tau)=\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16$. From τ >2 it is sufficient to find only positive roots of $\mathrm{P}(\tau)$. By Descartes' theorem (e.g. [12]) $\mathrm{P}(\tau)$ has at most two positive roots. Now we find the first derivative of $\mathrm{P}(\tau)$ and get
$Q(\tau)=2 \tau\left(3 \tau^{4}+5 \tau^{3}-16 \tau^{2}-36 \tau-16\right)$
By Descartes' theorem $\mathrm{Q}(\tau)$ has at most one positive root. Using $\mathrm{Q}(2)<0$ and $\mathrm{Q}(3)$ >0 i.e., by Intermediate Value Theorem we can conclude $Q(\tau)$ has at least one root in the segment $[2 ; 3]$.

On the other hand, $\mathrm{P}(0)>0$ and $\mathrm{P}(1)<0$ i.e., by Intermediate Value Theorem $\mathrm{P}(\tau)$ has one root in the segment $[0 ; 1]$: Hence, $\mathrm{P}(\tau)$ has exactly one positive root which belongs to the interval $(2, \infty)$. Let $\tau_{c r}\left(\tau_{c r}^{(1)} \approx 3.22\right)$ be the positive root of the polynomial. Consequently, we can conclude that if $2<\tau<\tau_{c r}^{(1)}$ then the system of equations (22) has not any positive solution. Let $\tau=\tau_{c r}^{(1)}$, then the system (22) has exactly one positive root. For the case $\tau>\tau_{c r}^{(1)}$, then (22) has exactly two positive roots if we can show $x_{1}>0$. Namely, after short calculations, $\tau>\tau_{c r}^{(1)}$ then we can show the inequality

$$
\frac{\tau^{2}\left(\tau^{2}-4\right)-\sqrt{\tau(\tau-2)\left(\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16\right)}}{2 \tau(\tau-2)}>0
$$

is equivalent to the inequality $\tau^{2}+2 \tau-2>0$.

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30- June)

For the case $\tau>\tau_{c r}^{(1)}$, from $a+b=x_{i}$ and $a b=y_{i}(i \in\{1,2\})$ after short calculations, we have two quadratic equations respectively to x_{1} and x_{2} :

$$
a^{2}-x_{1} a-\frac{\left(\tau^{2}-2 \tau-1\right) x_{1}-\tau^{2}-2 \tau}{2}=0
$$

and

$$
a^{2}-x_{2} a-\frac{\left(\tau^{2}-2 \tau-1\right) x_{2}-\tau^{2}-2 \tau}{2}=0 .
$$

The discriminants are

$$
D_{1,2}(\tau)=\frac{\left.3 \tau^{6}-2 \tau^{5}-20 \tau^{4}+16 \tau^{2}+8 \pm\left(3 \tau^{2}-2 \tau-2\right) \sqrt{\tau(\tau-2)\left(\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16\right)}\right)}{2 \tau(\tau-2)} .
$$

Now we find positive zeroes of

$$
\left.3 \tau^{6}-2 \tau^{5}-20 \tau^{4}+16 \tau^{2}+8 \pm\left(3 \tau^{2}-2 \tau-2\right) \sqrt{\tau(\tau-2)\left(\tau^{6}+2 \tau^{5}-8 \tau^{4}-24 \tau^{3}-16 \tau^{2}+16\right)}\right)=0 .
$$

A solution to the last equation is also the solution to the following equation:
$3 \tau^{8}+16 \tau^{7}+4 \tau^{6}+120 \tau^{5}-176 \tau^{4}-128 \tau^{3}+112 \tau^{2}+32 \tau+16=0$.
By Descartes' theorem $R(\tau)=3 \tau^{8}+16 \tau^{7}+4 \tau^{6}+120 \tau^{5}-176 \tau^{4}-128 \tau^{3}+112 \tau^{2}+32 \tau+16$ have at most two positive roots. Since $\mathrm{R}(0)>0, \mathrm{R}(1)<0 ; \mathrm{R}(2)>0$ and $\lim _{\tau \rightarrow \infty} R(\tau)=+\infty$ we can conclude they are not in the interval $(2, \infty)$. Consequently, $D_{1,2}(\tau)>0$ for any value of $\tau \in\left(\tau_{c r}^{(1)}, \infty\right)$

Finally, we consider the case $\tau=\tau_{c r}^{(1)}$. From above, it is sufficient to solve the following equation:

$$
4 a^{2}-2 \tau(\tau+2) a-\tau(\tau+1)(\tau+2)(\tau-3)=0 .
$$

Its discriminant is

$$
D(\tau)=4 \tau(\tau+2)\left(5 \tau^{2}-6 \tau-24\right) .
$$

It's easy to check $D\left(\tau_{c r}^{(1)}\right)>0$, thus there are two positive solutions to (19).
Theorem 5. Let $\tau=J \beta+\frac{1}{J \beta}, \tau_{c r}^{(2)} \approx 2.26$.Then for the parameter $\tau \in\left(2, \tau_{c r}^{(2)}\right)$ there are not any Gradient Gibbs measures associated with a 4-periodic boundary law satisfying the equality $\mathrm{a} \neq \mathrm{b}$ for the model (5) on the Cayley tree of order three.

Proof. Now we consider the case $a \neq b$. Then the system of equations (16) can be written as

$$
\left\{\begin{align*}
a^{4}+a b^{3}+\tau(\tau+2) a & =\tau^{2} a^{3}+2 \tau b^{3}+2, \tag{24}\\
b^{4}+a^{3} b+\tau(\tau+2) b & =\tau^{2} b^{3}+2 \tau a^{3}+2 .
\end{align*}\right.
$$

In this case, applying the same solution above one gets system of equations with respect to x and y that is equivalent to (24):

$$
\left\{\begin{array}{c}
x^{4}-3 x^{2} y+\tau(\tau+2) x=\tau(\tau+2)\left(x^{3}-3 x y\right)+4 \tag{25}\\
x^{3}-3 x y+\tau(\tau+2)=\tau(\tau-2)\left(x^{2}-y\right)
\end{array}\right.
$$

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH VOLUME-7 ISSUE-6 (30- June)

In order to find the number of solutions of the last system we can consider the following quartic equation with respect to x :

$$
\begin{equation*}
\tau(\tau-2) x^{4}-\tau^{2}(\tau-2)(\tau+2) x^{3}+\left(\tau^{4}+6 \tau^{3}+8 \tau^{2}-6\right) x+2 \tau(\tau-2)=0 . \tag{26}
\end{equation*}
$$

Finding the first and second derivatives of $R(x, \tau)=\tau(\tau-2) x^{4}-\tau^{2}(\tau-2)(\tau+2) x^{3}+\left(\tau^{4}+6 \tau^{3}+8 \tau^{2}-6\right) x+2 \tau(\tau-2)=0$ we get following two polynomials:

$$
\begin{aligned}
& S(x, \tau)=4 \tau(\tau-2) x^{3}-3 \tau^{2}(\tau-2)(\tau+2) x^{2}+\tau^{4}+6 \tau^{3}+8 \tau^{2}-6 \\
& T(x, \tau)=12 \tau(\tau-2) x^{2}-6 \tau^{2}(\tau-2)(\tau+2) x
\end{aligned}
$$

It is clear that 0 and $\frac{\tau(\tau+2)}{2}$ are solutions of the equation $T(x, \tau)=0$. Now we find the value of $S(x ; \tau)$ at the point $x=\frac{\tau(\tau+2)}{2}$ and get:

$$
W(\tau)=-\frac{\tau^{8}}{4}-\tau^{7}+4 \tau^{5}+5 \tau^{4}+6 \tau^{3}+8 \tau^{2}-8
$$

It is easy to check that $\mathrm{W}(0)<0, \mathrm{~W}(2)>0$ and $\mathrm{W}(3)<0$. Let $\tau\left(\tau_{c r} \approx 2.26\right)$ be the solution of the equation $\mathrm{W}(\tau)=0$: Then for any value of $\tau \in\left(2, \tau_{c r}\right)$ there exists only one intersection point of $S(x ; \tau)$ with the negative x-axis. Consequently, using the fact $R(0$; $\tau)>0$ we can conclude there would be no positive roots of the equation $R(x ; \tau)=0$: This completes the proof.

REFERENCES:

[1] M. Biskup, R. Kotecky, Phase coexistence of gradient Gibbs states, Probab. Theory Related Fields 139(1-2) (2007), 1-39.
[2] R. Bissacot, E.O. Endo, A.C.D. van Enter, Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields, Stoch. Process. Appl. 127(12) (2017), 4126-4138.
[3] G.I. Botirov, F.H. Haydarov, Gradient Gibbs measures for the SOS model withinteger spin values on a Cayley tree. J. Stat. Mech. Theory Exp. 9 (2020), 093102,9 pp.
[4] A.C.D. van Enter, C.Kulske, Non-existence of random gradient Gibbs measures in continuous interface models in d = 2, Ann. Appl. Probab. 18 (2008) 109-119.
[5] S. Friedli, Y. Velenik, Statistical mechanics of lattice systems. A concrete mathematical introduction. Cambridge University Press, Cambridge, 2018. xix +622 pp.
[6] T. Funaki, H. Spohn, Motion by mean curvature from the Ginzburg-Landau $\nabla \varphi$ interface model, Comm. Math. Phys., 185, 1997.
[7] H.O. Georgii, Gibbs Measures and Phase Transitions, Second edition. de Gruyter Studies in Mathematics, 9. Walter de Gruyter, Berlin, 2011.
[8] F. Henning, C. Kulske, A. Le Ny, U.A. Rozikov, Gradient Gibbs measures for the SOS model with countable values on a Cayley tree. Electron. J. Probab. 24(2019), Paper No. 104, 23 pp.

