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We consider Gradient Gibbs measures corresponding to a periodic boundary law for 

a generalized SOS model with spin values from a countable set, on Cayley trees. On the 

Cayley tree, detailed information on Gradient Gibbs measures for models of SOS model 

are given in [3, 8, 11, 16]. Investigating these works for the generalized SOS model, in this 

paper the problem of finding Gradient Gibbs measures which correspond to periodic 

boundary laws is reduced to a functional equation. 

By solving this equation all Gradient Gibbs measures with 4 periodic boundary laws 

are found.  
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INTRODUCTION 

The gradient Gibbs measure is a probability measure on the space of gradient 

fields defined on a manifold. It is often used in statistical mechanics to describe the 

equilibrium states of a system. The gradient Gibbs measure is derived from the Gibbs 

measure, which is a probability measure on the space of field configurations. The 

critical difference is that the gradient Gibbs measure focuses on the gradients of the 

fields rather than the fields themselves (e.g. [7]). Specifically, the Gradient Gibbs 

measure is defined on the set of spin configurations of a system on a Cayley tree. The 

Gradient Gibbs measure on a Cayley tree assigns a probability to each possible spin 

configuration based on the energy of that configuration. The energy of a spin 

configuration is determined by the interactions between neighboring spins. In the case 

of a Cayley tree, each spin is coupled to its nearest neighbors along the edges of the 

tree (see [5]). 

Mathematically, the gradient Gibbs measure assigns a probability to each possible 

configuration of a gradient field on the Cayley tree, based on an energy function. The 

energy function typically represents the interactions between the gradients of a scalar 

field or a vector field. The probability of a configuration is proportional to the 

exponential of the negative energy of that configuration (e.g. [1, 4, 5, 12, 14]). 

The study of random field x  from a lattice graph (e.g., d  or a Cayley tree k ) to 

a measure space ( , )E E is a central component of ergodic theory and statistical physics. 

In many classical models from physics (e.g., the Ising model, the Potts model, the SOS 

mailto:sevinch0603@mail.ru


JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH 

VOLUME-7 ISSUE-6 (30- June) 

17 

 

model), E is a finite set (i.e., with a finite underlying measure λ ), and x  has a physical 

interpretation as the spin of a particle at location x in a crystal lattice (detail in [1, 2, 3, 

6, 7, 8, 9, 10, 14, 15]). 

Let us give basic definitions and some known facts related to (gradient) Gibbs 

measures. The Cayley tree ( , )k V L =  of order k ≥ 1 is an infinite tree, i.e. connected 

and undirected graph without cycles, each vertex of which has exactly k + 1 edges. 

Here V is the set of vertices of k and L is the set of its edges. 

Consider models where the spin takes values in the set +

  , and is assigned to 

the vertices of the tree. Let A

A =   be the set of all configurations on A and : V = . A 

partial order ≤ on Ω defined pointwise by stipulating that σ1 ≤ σ2 if and only if σ1(x) ≤ 

σ2(x) for all x ϵ V . Thus (Ω;≤) is a poset, and whenever we consider Ω as a poset then it 

will always be with respect to this partial order. The poset Ω is complete. Also, Ω can 

be considered as a metric space with respect to the metric : +→  given by 

   ( ) ( ) ( )
0

( ) , ( ) 2 ,
n nn n

n

n n x xx V x V
n

x x
 

   

 −

 


= X  

where 0 1 2{ , , ,....}V x x x= and AX  is the indicator function. 

We denote by N the set of all finite subsets of V . For each A V let : A

A →  be 

given by ( ) ( )A x xx V x A
  

 
=  and let ( )( )1 A

A A
−= C P . Let 

A

A

=
N

C C  and F  is the 

smallest sigma field containing C . Write  V\ =T F and T for the tail-σ-algebra, i.e., 

intersection of  T  over all finite subsets Λ of L: The sets in T are called tail- 

measurable sets. 

Definition 1. [5] Let : : { , }P → =  −   be F -measurable mapping for all Λ ϵ 

N, then the collection   P P 
=

N
 is called a potential. Also, the following expression 

 def 

,

,

( ) ( ), .PH P   

 

=  
N

                                           (1) 

is called Hamiltonian H associated with the potential P. 

For a fixed inverse temperature β > 0, the Gibbs specification is determined by a 

family of probability kernels  ( )  
=

N
 defined on c 

 F by the Boltzmann-Gibbs 

weights 

( ),
1

( ) PH
e

  


    −

 



=
Z

∣                                                    (2) 

where ( ),PH
e

 



 



−





= Z  is the partition function, related to free energy. 

From [5], the family of mappings { ( )}   N∣  is the family of proper F - measurable 

quasi-probability kernels. Thus, the collection   
=

N
V  will be called an F-

specification if     =  whenever , N  with   . Let   
=

N
V  be an F-
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specification; then a probability measure µ ϵ  P(F) is called a Gibbs measure with 

specification V if  =  for each N . 

1 Gradient Gibbs measure 

For any configuration ( ( )) V

x Vx  =   and edge ,e x y=    of L  (oriented) the 

difference along the edge e is given by e y x   = −  and  is called the gradient field 

of  . The gradient spin variables are now defined by ,x y y x    = −  for each ,x y  . The 

space of gradient configurations is denoted by  . The measurable structure on the 

space   is given by σ-algebra 

( ): { } .e e L  = F ∣  

Note that F  is the subset of F  containing those sets that are invariant under 

translation c → +  for c E . Similarly, we define 

,   

   =  = T T F F F F  

For nearest-neighboring (n.n.) interaction potential ( )b b
 =  , where ,b x y=    is 

an edge, define symmetric transfer matrices  bQ   by 

( )
( ) ( ) ( )( )1 1

{ } { }| | | |
.

b b x x y yx y

b bQ e
  


− −−  +   +  

=  

Define the Markov (Gibbsian) specification as 

( ) ( ) ( )1

0

( ) .b b

b

Z Q       −

   



= = ∣  

If for any bond ,b x y=    the transfer operator ( )b bQ   is a function of gradient 

spin variable b y x  = −  then the underlying potential   is called a gradient 

interaction potential. Note that for all A F , the kernels ( , )A 

  are F  -

measurable functions of  , it follows that the kernel sends a given measure µ on 

( ),  F  to another measure  

  on ( ),  F . A measure µ on ( ),  F  is called a 

gradient Gibbs measure if it satisfies the equality  

 =  (detail in [10, 11, 13]). 

Note that, if µ is a Gibbs measure on ( , ) F , then its restriction to F  is a 

gradient Gibbs measure. A boundary law is called q-periodic if ( ) ( )xy xyl i q l i+ =  for every 

oriented edge ,x y    L  and each i . 

It is known that there is a one-to-one correspondence between boundary laws 

and tree indexed Markov chains if the boundary laws are normalisable in the sense of 

Zachary [15]: 

Definition 2. (Normalisable boundary laws). A boundary law l is said to be 

normalisable if and only if 

( ) ( ),
x z

zx x z zx z

z x

Q l
 

  
 

 
  

 
   

for any x V . 

The correspondence now reads the following: 
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Theorem 1. (Theorem 3.2 in [15]). For any Markov specification γ with associated 

family of transfer matrices ( )b b L
Q


 we have 

1.Each normalisable boundary law ( )
,xy x y

l  for ( )b b L
Q


 defines a unique tree-

indexed Markov chain ( ) G  via the equation given for any connected set S  

( ) ( ) ( ) ( )
1

yy y b b

y b

Z l Q    


−

  

 

= =                                   (3) 

where for any ,y y  denotes the unique n.n. of y  in  . 

2. Conversely, every tree-indexed Markov chain ( ) G  admits a representation 

of the form (3.15) in terms of a normalisable boundary law (unique up to a constant 

positive factor). 

The Markov chain µ defined in (3) has the transition probabilities 

( )
( ) ( , )

( , )
( ) ( , )

yx yx

xy y x

yx yx

s

l j Q j i
P i j j i

l s Q s i
  = = = =


∣                                 (4) 

The expressions (4) may exist even in situations where the underlying boundary 

law  ( )
,xy x y

l  is not normalisable. However, the Markov chain given by (4), in general, 

does not have an invariant probability measure. Therefore in [8]; [9]; [10]; [11] some 

nonnormalisable boundary laws are used to give gradient Gibbs measures. 

Now we give some results of above-mentioned paper. Consider a model on Cayley 

tree ( , )k V L = , where the spin takes values in the set of all integer numbers . The set 

of all configurations is : V = . 

Now we consider the following Hamiltonian: 

,

( ) (| |) | |x y x y

x y

H J     
 

= − − − ,                                           (5) 

where 

1

1 2

2

, if $m 2 $
(| |) , , .

, if $m 2 +1$

p
m p p

p
 +


= 


 

Note that if p1 = p2 then the considered model is called SOS model. 

For the Hamiltonian (5) the transfer operator is defined by 
(| |)| |( , ) ,J i j i jQ i j e − − −=  

where β > 0 is the inverse temperature and J  . 

Also, the boundary law equation of the Hamiltonian can be written as: 

0

0

( ,0) ( , )

(0,0) (0, )

k

j

j Z

i

j

j Z

Q i Q i j z

z
Q Q j z





 +
 

=  
+

 
 




.                                            (6) 

Put : exp( ) 1J = −  . For translation invariant boundary law, the transfer 

operator Q reads | |( ) i jQ i j  −− =  for any ,i j . If : 1Je  −=   then we can write the 

equation (6) as 
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0

0

(| |)| | (| |)| |

0(| |)| |
, : {0}.

1

k
i i i j i j

j

j Z

i j j

j

j Z

z

z i
z

 



 



− −





 +
 

=  = 
+

 
 




‚                           (7) 

Let { }i iz   be q -periodic sequence, i.e. i i qz z +=  for all i . 

{
 
 
 
 
 
 

 
 
 
 
 
 

0

0

(|1|) (|1 |)|1 |

1 (| |)| |
;

1

k
j j

j

j Z

j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





0

0

2 (|2|) (|2 |)|2 |

2 (| |)| |
;

1

k
j j

j

j Z

j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





... ... ... ... ...

0

0

(| |) (| |)| |

(| |)| |
.

1

k
q q q j q j

j

j Z

q j j

j

j Z

z

z
z

 



 



− −





 +
 

=  
+

 
 





                                           (8) 

Proposition 1. Let { }i iz   be q-periodic sequence. Then finding q-periodic 

solutions 

to the system (7) is equivalent to solving the system of equations (8). 

Proof. To prove the Proposition, it is sufficient to show i q iz z +=  for all 

{1,2,..., 1, }i q q − . Since 0 0z = , for a fixed 0i  , the numerator of the fraction in (7) can 

be written as 
0 0 0 0 0 0

0

(| |)| | (| |)| | (| |)| |
.

i i i j i j i j i j

j j

j j

z z
    − − − −

 

+ =   

Also, it can be rewritten as 
0 0 1 2 2 1

0 0 0 0 0

(| |)| | 2 2

2 1 1 2... ...
i j i j p p p p

j i i i i i

j

z z z z z z
    − −

− − + +



= + + + + + +                               (9) 

Similarly, for 0i q+  we have 

0 0 1 2 2 1

0 0 0 0 0

(| |)| | 2 2

2 1 1 2... ...
i q j i q j p p p p

j i q i q i q i q i q

j

z z z z z z
    + − + −

+ − + − + + + + +



= + + + + + +         (10) 

If we change k qz +  in (10) to kz  for all k  then we obtain (9). Namely, we have 

proved 

0 0 0 0

0

0

0

(| |) (| |)| |

(| |)| |1

k
i i i j i j

j

j Z

i j j

j

j Z

z

z
z

 



 



− −





 +
 

= = 
+

 
 





0 0 0 0

0

0

0

( ) (| |) (| |)| |

(| |)| |1

k
i q i q i q j i q j

j

j Z

i qj j

j

j Z

z

z
z

 



 



+ + + − + −



+



 +
 

= 
+

 
 




. 

Let 
0

k
i iu u z=  for some 0 0u  . Then using the Proposition 1 we obtain 

2 1 2 2 1 2

2 1 2 2 1 2

3 2 2 3

3 2 1 1 2 3

3 2 2 3

3 2 1 0 1 2 3

... ...
.

... ...

p p p p p pk k k k k k k

i i i i i i i
i p p p p p pk k k k k k k

u u u u u u u
u

u u u u u u u

     

     
− − − + + +

− − −

+ + + + + + + +
=

+ + + + + + + +
 

We can rewrite the last system of equations in the following form: 
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1 2 2 1

1 2 2 1

2 (2 1) (2 1) 2

2 2 1 2 1 2

1 1 1 1

2 (2 1) (2 1) 2

2 2 1 0 2 1 2

1 1 1 1

,

p j j p j p p jk k k k k

i j i j i i j i j

j j j j

i
p j j p j p p jk k k k k

j j j j

j j j j

u u u u u

u

u u u u u

   

   

   
− −

− − + + − +

= = = =

   
− −

− − + −

= = = =

+ + + +

=

+ + + +

   

   
 where .i         

(11) 

2 Main results 

In this section, we find periodic solutions (defined in [16]) to (7) which 

correspond to periodic boundary condition. Namely, for all m ϵ Z we consider the 

following sequence: 

1, 2 ;

, 4 1;

, 4 1,

n

ifn m

u a ifn m

b ifn m

=


= = −
 = +

                                                         (12) 

where a and b are some positive numbers. 

By Proposition 1, finding solutions that are formed in (12) to (7) is equivalent to 

solving the following system of equations: 

{
 
 

 
 

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

4 3 2 2 3 4

4 3 2 2 3 4

... ...
;

... 1 ...

p p p p p p p pk k k k k

p p p p p p p pk k k k

a b a b a
a

b a b a

       

       

+ + + + + + + + + +
=

+ + + + + + + + + +

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

4 3 2 2 3 4

4 3 2 2 3 4

... ...
.

... 1 ...

p p p p p p p pk k k k k

p p p p p p p pk k k k

b a b a b
b

b a b a

       

       

+ + + + + + + + + +
=

+ + + + + + + + + +
.

          (13) 

Namely, 

{
 
 

 
 

2 2 1 1 1 1

1 1 2 2

3 4 8 2 6

2 4 3

2( ...) (1 2 2 ...) 2( ...)
;

1 2 2 ... ( ...)( )

p p p p p pk k

p p p p k k

a b
a

a b

     

   

+ + + + + + + + +
=

+ + + + + + +

2 2 1 1 1 1

1 1 2 2

3 4 8 2 6

2 4 3

2( ...) (1 2 2 ...) 2( ...)

1 2 2 ... ( ...)( )

p p p p p pk k

p p p p k k

b a
b

a b

     

   

+ + + + + + + + +
=

+ + + + + + +

              (14) 

Taking into account θ < 1 one writes the last system of equations as follows: 
2 1 1

2 1 1

1 2

1 2

4 2

2 4 4

2

2 2

2 1 2

1 1 1

1
( )

1 1

p p p
k k

p p p

p p
k k

p p

a b

a

a b

  

  
 

 

+
+ +

− − −=
+

+ +
− −

,   

2 1 1

2 1 1

1 2

1 2

4 2

2 4 4

2

2 2

2 1 2

1 1 1

1
( )

1 1

p p p
k k

p p p

p p
k k

p p

b a

b

a b

  

  
 

 

+
+ +

− − −=
+

+ +
− −

.           (15) 

For all k  and 1 2,p p  , the analysis of (15) is so difficult and that’s why we 

consider the case 2

1

1
2p

p
= =  and 2.k = Then (15) can be written as 

2 2 2 2 2 2

2 2 2 2

2 2 2 2
,

( 2) ( 2)

a b a b
a b

a b a b

   

   

+ + + +
= =

+ + + + + +
                                 (16) 

where 
1

2. 


= +   

At first, we consider the case a = b. The system of equations (16) is reduced to the 

polynomial equation: 
3 22 ( 2) ( 2) 2 0a a a   − + + + − = .                                       (17) 
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Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1. 

Consequently, one gets 
2 22 ( 2 2) 2 0.a a − + − + =  

For any value of the parameter τ the last quadratic equation has two solutions. 

Theorem 2. Let 
1

J
J

 


= + .Then for the model (5) on the the Cayley tree of order 

two the following assertion holds: 

1. For any value of the parameter τ there are precisely three GGMs 

associated with a 2-periodic boundary law. 

Let k = 3: In this case, in order to find 2-periodic boundary law we will consider 

the following equation: 
4 3 1 0a a a − + − =                                               (18) 

where 
( 2)

.
2

 


+
=  

Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1. 

Consequently, one gets 
2( 1)( 1) 0.a a a+ − + =  

For any value of the parameter τ the last quadratic equation has two solutions. 

Theorem 3. Let 
1

J
J

 


= + . Then for the model (5) on the the Cayley tree of 

order three the following assertion holds: 

1. For any value of the parameter τ there are precisely three GGMs 

associated with a 2-periodic boundary law. 

It is important to consider Gradient Gibbs measures associated with a 4-periodic 

boundary law for the model (5). The following theorem gives us a full description of 

Gradient Gibbs measures associated with a 4-periodic boundary law. 

Theorem 4. Let  
1

J
J

 


= + , (1) 3.22cr  .Then for Gradient Gibbs measures 

associated with a 4-periodic boundary law for the model (5) on the Cayley tree of 

order two the following statements hold: 

1. If  (1)

cr  , then there are three GGMs associated with a 4-periodic 

boundary law. 

2. If (1)

cr = , then there are five such GGMs. 

3. If  (1)

cr  ,  then there are exactly seven such GGMs. In each case one of 

solutions is a = b = 1. 

Proof. Now we consider the case a 6= b. Then the system of equations (16) can be 

written as 

{

3 2 2 2 2( 2) 2 2a ab a a b   + + + = + + ;

3 2 2 2 2( 2) 2 2.b a b b b a   + + + = + +
                                      (19) 
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Now we subtract the second equation of (19) from the first one and get 
3 3 2 2( ) ( 2)( ) ( 2)( ).a b ab a b a b a b   − − − + + − = − −  

Since a ≠ b, both sides can be divided by a - b and one gets 
2 2 ( 2) ( 2)( ).a b a b   + + + = − +                                           (20) 

By adding the second and first equations of (19), we have 
2 2 2 2( )( ) ( 2)( ) ( 2)( ) 4a b a b a b a b   + + + + + = + + +                             (21) 

Let a+b = x and ab = y. By using (20) and (21) one gets a new system of equations 

with respect to x and y that is equivalent to (19): 

{

2 2 ( 2) ( 2)x y x   − + + = −

3 22 ( 2) ( 2)( 2 ) 4x xy x x y   − + + = + − +
                                 (22) 

In order to find the number of solutions of the last system we can consider the 

following quadratic equation with respect to x: 
2 2 2 2 2( 2) ( 4) ( 2) 4 0.x x     − − − + + − =                               (23) 

It is easy to check that 
2 2 6 5 4 3 2

1

( 4) ( 2)( 2 8 24 16 16)

2 ( 2)
x

        

 

− + − + − − − +
=

−
 

and 
2 2 6 5 4 3 2

2

( 4) ( 2)( 2 8 24 16 16)

2 ( 2)
x

        

 

− − − + − − − +
=

−
 

are solutions to the equation (23). Put 6 5 4 3 2( ) 2 8 24 16 16P      = + − − − + . From τ 

> 2 it is sufficient to find only positive roots of P(τ). By Descartes’ theorem (e.g. [12]) 

P(τ) has at most two positive roots. Now we find the first derivative of P(τ) and get 
4 3 2( ) 2 (3 5 16 36 16)Q      = + − − −  

By Descartes’ theorem Q(τ) has at most one positive root. Using Q(2) < 0 and Q(3) 

> 0 i.e., by Intermediate Value Theorem we can conclude Q(τ) has at least one root in 

the segment [2; 3]. 

On the other hand, P(0) > 0 and P(1) < 0 i.e., by Intermediate Value Theorem P(τ) 

has one root in the segment [0; 1]: Hence, P(τ) has exactly one positive root which 

belongs to the interval (2, ) . Let (1)( 3.22)cr cr   be the positive root of the polynomial. 

Consequently, we can conclude that if (1)2 cr    then the system of equations (22) has 

not any positive solution. Let  (1)

cr = , then the system (22) has exactly one positive 

root. For the case  (1)

cr  , then (22) has exactly two positive roots if we can show 

1 0x  . Namely, after short calculations, (1)

cr   then we can 

show the inequality 
2 2 6 5 4 3 2( 4) ( 2)( 2 8 24 16 16)

0
2 ( 2)

        

 

− − − + − − − +


−
 

is equivalent to the inequality 2 2 2 0 + −  . 
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For the case (1)

cr  , from ia b x+ =  and iab y=  ( {1,2}i ) after short calculations, 

we have two quadratic equations respectively to 1x  and 2x : 

2 2
2 1

1

( 2 1) 2
0

2

x
a x a

   − − − −
− − =  

and 
2 2

2 2
2

( 2 1) 2
0.

2

x
a x a

   − − − −
− − =  

The discriminants are 
6 5 4 2 2 6 5 4 3 2

1,2

3 2 20 16 8 (3 2 2) ( 2)( 2 8 24 16 16))
( ) .

2 ( 2)
D

            


 

− − + +  − − − + − − − +
=

−

 

Now we find positive zeroes of 
6 5 4 2 2 6 5 4 3 23 2 20 16 8 (3 2 2) ( 2)( 2 8 24 16 16)) 0.            − − + +  − − − + − − − + =  

A solution to the last equation is also the solution to the following equation: 
8 7 6 5 4 3 23 16 4 120 176 128 112 32 16 0.       + + + − − + + + =  

By Descartes’ theorem 8 7 6 5 4 3 2( ) 3 16 4 120 176 128 112 32 16R         = + + + − − + + +  

have at most two positive roots. Since R(0) > 0, R(1) < 0; R(2) > 0 and lim ( )R



→

= +  we 

can conclude they are not in the interval (2, ) . Consequently, 1,2 ( ) 0D    for any value 

of (1)( , )cr    

Finally, we consider the case (1)

cr = . From above, it is sufficient to solve the 

following equation: 
24 2 ( 2) ( 1)( 2)( 3) 0.a a     − + − + + − =  

Its discriminant is 
2( ) 4 ( 2)(5 6 24).D     = + − −  

It’s easy to check (1)( ) 0crD   , thus there are two positive solutions to (19). 

Theorem 5. Let 
1

J
J

 


= + , (2) 2.26cr  .Then for the parameter (2)(2, )cr  there 

are not any Gradient Gibbs measures associated with a 4-periodic boundary law 

satisfying the equality a ≠ b for the model (5) on the Cayley tree of order three. 

Proof. Now we consider the case a ≠ b. Then the system of equations (16) can be 

written as 

{

4 3 2 3 3( 2) 2 2;a ab a a b   + + + = + +

4 3 2 3 3( 2) 2 2.b a b b b a   + + + = + +
                                       (24) 

In this case, applying the same solution above one gets system of equations with 

respect to x and y that is equivalent to (24): 

{

4 2 33 ( 2) ( 2)( 3 ) 4x x y x x xy   − + + = + − +

3 23 ( 2) ( 2)( )x xy x y   − + + = − −
                              (25) 
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In order to find the number of solutions of the last system we can consider the 

following quartic equation with respect to x: 
4 2 3 4 3 2( 2) ( 2)( 2) ( 6 8 6) 2 ( 2) 0.x x x         − − − + + + + − + − =                 (26) 

Finding the first and second derivatives of  
4 2 3 4 3 2( , ) ( 2) ( 2)( 2) ( 6 8 6) 2 ( 2) 0R x x x x          = − − − + + + + − + − =  we get following 

two polynomials: 
3 2 2 4 3 2( , ) 4 ( 2) 3 ( 2)( 2) 6 8 6S x x x        = − − − + + + + −  

2 2( , ) 12 ( 2) 6 ( 2)( 2)T x x x     = − − − +  

It is clear that 0 and 
( 2)

2

  +
 are solutions of the equation  ( , ) 0.T x  = Now we find 

the value of S(x; τ) at the point 
( 2)

2
x

  +
=  and get: 

8
7 5 4 3 2( ) 4 5 6 8 8

4
W


     = − − + + + + −  

It is easy to check that W(0)<0, W(2)>0 and W(3)<0. Let  ( 2.26)cr   be the 

solution of the equation W(τ) = 0: Then for any value of (2, )cr   there exists only one 

intersection point of S(x; τ) with the negative x-axis. Consequently, using the fact R(0; 

τ) > 0 we can conclude there would be no positive roots of the equation R(x; τ) = 0: 

This completes the proof. 
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