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We consider Gradient Gibbs measures corresponding to a periodic boundary law for
a generalized SOS model with spin values from a countable set, on Cayley trees. On the
Cayley tree, detailed information on Gradient Gibbs measures for models of SOS model
are given in [3, 8, 11, 16]. Investigating these works for the generalized SOS model, in this
paper the problem of finding Gradient Gibbs measures which correspond to periodic
boundary laws is reduced to a functional equation.

By solving this equation all Gradient Gibbs measures with 4 periodic boundary laws
are found.
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INTRODUCTION

The gradient Gibbs measure is a probability measure on the space of gradient
fields defined on a manifold. It is often used in statistical mechanics to describe the
equilibrium states of a system. The gradient Gibbs measure is derived from the Gibbs
measure, which is a probability measure on the space of field configurations. The
critical difference is that the gradient Gibbs measure focuses on the gradients of the
fields rather than the fields themselves (e.g. [7]). Specifically, the Gradient Gibbs
measure is defined on the set of spin configurations of a system on a Cayley tree. The
Gradient Gibbs measure on a Cayley tree assigns a probability to each possible spin
configuration based on the energy of that configuration. The energy of a spin
configuration is determined by the interactions between neighboring spins. In the case
of a Cayley tree, each spin is coupled to its nearest neighbors along the edges of the
tree (see [5]).

Mathematically, the gradient Gibbs measure assigns a probability to each possible
configuration of a gradient field on the Cayley tree, based on an energy function. The
energy function typically represents the interactions between the gradients of a scalar
field or a vector field. The probability of a configuration is proportional to the
exponential of the negative energy of that configuration (e.g. [1, 4, 5, 12, 14]).

The study of random field ¢, from a lattice graph (e.g., 1 or a Cayley tree I'*) to

a measure space (E,E)is a central component of ergodic theory and statistical physics.

In many classical models from physics (e.g., the Ising model, the Potts model, the SOS
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model), E is a finite set (i.e., with a finite underlying measure A ), and &, has a physical
interpretation as the spin of a particle at location x in a crystal lattice (detail in [1, 2, 3,
6,7,8,9 10, 14, 15]).

Let us give basic definitions and some known facts related to (gradient) Gibbs
measures. The Cayley tree T =(V,L) of order k = 1 is an infinite tree, i.e. connected
and undirected graph without cycles, each vertex of which has exactly k + 1 edges.
Here V is the set of vertices of ' and L is the set of its edges.

Consider models where the spin takes values in the set ® [, and is assigned to

the vertices of the tree. Let Q, = ®” be the set of all configurations on A and Q:=®". A

partial order < on Q) defined pointwise by stipulating that o1 < 62 if and only if 01(x) <
02(x) for all x e V.. Thus (£;<) is a poset, and whenever we consider () as a poset then it
will always be with respect to this partial order. The poset Q is complete. Also, () can
be considered as a metric space with respect to the metric p:QxQ—[" given by
SR CACO NN I 2.2 SR
" n>0

where V ={X,,X,X,,....}and X, is the indicator function.

We denote by N the set of all finite subsets of V. For each AeVlet z,:Q — ®* be
given by z,(o,) , =(o,),., and let C, :ﬂ;\l(P (CDA)). Let C=|JC, and F is the
AeN

smallest sigma field containing C. Write T, =F,,,and T for the tail-c-algebra, i.e.,
intersection of T, over all finite subsets A of L: The sets in T are called tail-
measurable sets.

Definition 1. [5] Let P, :Q — [ =[] U{-w,} be F, -measurable mapping for all A

N, then the collection P :{PA }AeN is called a potential. Also, the following expression

def

H,p(0) = Z P.(o), VoeQ. (D)

ANA#=D,AeN
is called Hamiltonian H associated with the potential P.
For a fixed inverse temperature 3 > 0, the Gibbs specification is determined by a

family of probability kernels ¢ =(¢,), . defined on Q, xF .by the Boltzmann-Gibbs

AeN
weights
1 _pue IN0)
élA(O-Alw):_we BHp(0p0) (2)
ZA
where Z7 = Ze_ﬂHxP("“) is the partition function, related to free energy.

oeQ,

From [5], the family of mappings {J, (ol ®)},.y is the family of proper F, - measurable
quasi-probability kernels. Thus, the collection V={¢,} will be called an F-

AeN

specification if ¢, =¢,¢, whenever A,AeN with AcA. Let V={¢,}  be an F-

AeN
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specification; then a probability measure p € P(F) is called a Gibbs measure with
specification V if y=ug, foreach AeN .

1 Gradient Gibbs measure
For any configuration o= (@(x)),., €0' and edge e=(x,y) of L (oriented) the

difference along the edge e is given by Vo, =0, -, and Vwis called the gradient field
of w. The gradient spin variables are now defined by 7, ,, =, —o, for each (x,y). The
space of gradient configurations is denoted by QY. The measurable structure on the
space Q" is given by o-algebra

FVY :=0({ne| ee I:})

Note that F " is the subset of F containing those sets that are invariant under
translation w — w+c for c € E. Similarly, we define

TV =T, nF" FY=F,nF"

For nearest-neighboring (n.n.) interaction potential ® :(CDb)b, where b=(x,y) is
an edge, define symmetric transfer matrices Q, by

Q ( o, ) _ ef(d)b(%ﬁlaxrl@{x}(wx )o@y (@, )
b = :

Define the Markov (Gibbsian) specification as

72)(61\ =, | w):(Z/(\D)(a))il H Qb(a)b)

bnA#0

If for any bond b=(x,y) the transfer operator Q,(w,) is a function of gradient
spin variable ¢, =o,-w, then the underlying potential ® is called a gradient

interaction potential. Note that for all AeFY, the kernels y;(Aw) are FV
measurable functions of o, it follows that the kernel sends a given measure p on

(Q,F V) to another measure wuyy on (Q,F V). A measure p on (Q,F V) is called a

gradient Gibbs measure if it satisfies the equality uyy = (detail in [10, 11, 13]).
Note that, if p is a Gibbs measure on (Q,F), then its restriction to F" is a

gradient Gibbs measure. A boundary law is called g-periodic if I (i+q)=1(i) for every

oriented edge (x,y)e L and each iell .

[t is known that there is a one-to-one correspondence between boundary laws
and tree indexed Markov chains if the boundary laws are normalisable in the sense of
Zachary [15]:

Definition 2. (Normalisable boundary laws). A boundary law 1 is said to be
normalisable if and only if

2 (H > sz(wx,wz)lzx(wz)}oo

w,€ll \ zedx w, el

forany xeV.
The correspondence now reads the following:
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Theorem 1. (Theorem 3.2 in [15]). For any Markov specification y with associated
family of transfer matrices (Q, ), , we have

1.Each normalisable boundary law (1) ~for (Q,),, defines a unique tree-

X,y

indexed Markov chain € G(y) via the equation given for any connected set A €S

ﬂ(UAuaA = a’AuaA) = (ZA )_1 H Ly, (a)y) H Q (mb) (3)

yeoA bNA=D
where for any ye0A,y, denotes the unique n.n.of y in A.
2. Conversely, every tree-indexed Markov chain x e G(y) admits a representation

of the form (3.15) in terms of a normalisable boundary law (unique up to a constant
positive factor).
The Markov chain p defined in (3) has the transition probabilities

1, (j
2. = (o, = 1o =i) =57 et Y

The expressions (4) may exist even in situations where the underlying boundary

law (Ixy)x,y is not normalisable. However, the Markov chain given by (4), in general,

does not have an invariant probability measure. Therefore in [8]; [9]; [10]; [11] some
nonnormalisable boundary laws are used to give gradient Gibbs measures.
Now we give some results of above-mentioned paper. Consider a model on Cayley

tree I'* = (V, L), where the spin takes values in the set of all integer numbers U . The set

of all configurationsis Q:=0".
Now we consider the following Hamiltonian:

H(O-):_‘]Za(lo-x_o-y I)lo-x_o-yli (5)
(xy)
where
, if 200
a(|m|)={pl ifSme20$

PP, el
b, if$me27+1g PPz €

Note that if p; = p, then the considered model is called SOS model.
For the Hamiltonian (5) the transfer operator is defined by

Q(i, J) — efJ/fa(IifiI)IifJ'I’

where 3 > 0 is the inverse temperature and J ] .

Also, the boundary law equation of the Hamiltonian can be written as:

Q(i,0)+ >~ Q(i, i)z,

o iez, . 6
“71 Q0.0+ 3 Q0. )z, (6)

i€z,

Put 60:=exp(-JpB)<1. For translation invariant boundary law, the transfer
operator Qreads Q(i—j)=6"" for any i,je0. If 8:=e?” <1 then we can write the

equation (6) as
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gl | 5 gati-idi-il; "\
Z, = ’EZZ‘Z — J el =0, {0} (7)
i 1+ 6“0z, 0 ’

jeZy

Let {z},., be g -periodic sequence, i.e. 7=z, forall iel .

. . k
( ge® 4 3 get-iniy,
7 = i€z, .
1= (i '
1+ 6e0hiz,
i€z,
. . k
g 4 3 ey
7. = i€Z,y .
2= (i ’
{ 1+ gz, (8)
i€z,
r 4 3 gela-aiy “
7 = i€z,
g 1+ 0“0z,
K jeZ,

Proposition 1. Let {z},, be q-periodic sequence. Then finding q-periodic
solutions
to the system (7) is equivalent to solving the system of equations (8).

Proof. To prove the Proposition, it is sufficient to show z =z, for all

ie{l2,..,9-10}. Since z,=0, for a fixed i, el , the numerator of the fraction in (7) can
be written as

a(lio ol allio=iDlio-il, _ e (lio— iDlio il

6 +>.0 z,=>6 Z;.
jeby jed

Also, it can be rewritten as

S D 2p, P p 2p,
Dotz — 40Pz 4077 +7, +0%7, 07, +... (9
jed

Similarly, for i, +q we have

3Gt Moraclly L gPhg 4077

P 2P
ih+q-2 ih+q-1 + Zi0+q +0~ Zi0+q+l +6 Zi0+q+2 +.. (10)
jel

If we change z,,, in (10) to z, for all kel then we obtain (9). Namely, we have

proved
T T k : . : N . k
g lioh z g2 io=Dlio=il ;. glo+aatip+a) | Z g io+a-illio+a-il;
J J
7 = jeZ, _ jeZy =7
o a (il B e (il = Cigra
1+ 6*Uiz, 1+ 6«0z,

jeZy jeZy

Let u; =u,4/z, for some u, >0. Then using the Proposition 1 we obtain
3Py, k 2p;,,k Py k k Py k 2p, K 3p,, K

U = AU 07U, 07U U 07U, 077U, 07U+

L 0UN 07 UK, + 07Uk Ul + 07U+ 07Ul + 6%+

We can rewrite the last system of equations in the following form:
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N 20 K N 2Dy, K K N p2iD)ps, N 20k
ZQ Uiy; +Z‘9 Uiy T4 +Z€ zui+2j—1+Z‘9 FUi;
u, =2 = = = ., where iell.
2pj, @J-1)py, K K (2J-1) py K 2pj,
ZH u_2j+29 Zu_2j+1+u0+20 2uzj_l+26? Us,

j=1 j=1 j=1 j=1

(11)

2 Main results

In this section, we find periodic solutions (defined in [16]) to (7) which
correspond to periodic boundary condition. Namely, for all m € Z we consider the
following sequence:

1, ifn=2m;
u, =4a,ifn=4m-1, (12)

b,ifn=4m+1,

where a and b are some positive numbers.

By Proposition 1, finding solutions that are formed in (12) to (7) is equivalent to
solving the following system of equations:

|{a— 0P 1+ 0%+ 62PD + 0™ +a" + 0% + 7P  + 6% + 0" + ...
4 et O 1 07D 1 07 £ 08" 4146070 + 07 + 67+ 0 4 (13)
Lb 0D+ 0% 1+ 07Pa + 0™ + D + 0 +07P @ + 0% + 0D ..
A O £ 0D 4 077 1 0™a 414 07D + 0% + 0% + O 4.
Namely,
I{a— 2007 + 0% +..)+(1+20"" +260°" +..)a" +2(0*™ +6°™ +..)b*
142077 420" +...+ (0% +6°™ +..)(a" +b%) ’ (14)
b 2007 +0%% +..)+ (1+20" +26°™ +..)b* +2(6°" + 0°™ +...)a"

14260 + 20 + ..+ (6" + 0% +..)(a" +b¥)

Taking into account 0 < 1 one writes the last system of equations as follows:

20" 1+ , 20" 20" 1+0'™ . 26°™
T i @t 4pb TR 4pb+ i a
a=1—6’ 2 1-0™™ 1-0™" b:1—9 2 1-9™"™ 1-6 . (15)
1+92p1 + sz (ak -I-bk) :l.'|'92pl + sz (ak -I—bk)
1-6%" 1-6°™ 1-6*" 1-6°"

For all kel and p,p, €, the analysis of (15) is so difficult and that’s why we

1
consider the case — = p, =2 and k =2.Then (15) can be written as

P
r?a? +2rb?* +2 2ra’ +7b% +2
=57 , b= 2 1.2 (16)
a“+b°+7(r+2) a“+b°+7(r+2)

where r:9+%>2.

At first, we consider the case a = b. The system of equations (16) is reduced to the

polynomial equation:
28’ —r(r+2)a’ +7(r+2)a-2=0. (17)
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Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1.
Consequently, one gets

2a° —(r* +2r-2)a+2=0.

For any value of the parameter T the last quadratic equation has two solutions.

Theorem 2. Let 7 = Jﬂ+% .Then for the model (5) on the the Cayley tree of order

two the following assertion holds:

1. For any value of the parameter Tt there are precisely three GGMs
associated with a 2-periodic boundary law.

Let k = 3: In this case, in order to find 2-periodic boundary law we will consider
the following equation:

a'—ya®+ya-1=0 (18)
where y = @

Since the last equation has a solution a = 1, we divide both sides of (17) by a - 1.
Consequently, one gets
(a+D)(a*-ya+1)=0.

For any value of the parameter T the last quadratic equation has two solutions.

Theorem 3. Let r:Jﬂ+$. Then for the model (5) on the the Cayley tree of

order three the following assertion holds:

1. For any value of the parameter Tt there are precisely three GGMs
associated with a 2-periodic boundary law.

It is important to consider Gradient Gibbs measures associated with a 4-periodic
boundary law for the model (5). The following theorem gives us a full description of
Gradient Gibbs measures associated with a 4-periodic boundary law.

Theorem 4. Let r=J,B+%, ) ~3.22.Then for Gradient Gibbs measures

associated with a 4-periodic boundary law for the model (5) on the Cayley tree of
order two the following statements hold:

1. If 7<z%, then there are three GGMs associated with a 4-periodic
boundary law.

2. If =71, then there are five such GGMs.

3. If z>7, then there are exactly seven such GGMs. In each case one of

solutionsisa=b =1.
Proof. Now we consider the case a 6= b. Then the system of equations (16) can be
written as

a’+ab’ +r(r+2)a=r’a’ +2th* +2;

3 2 2182 2 (19)
b°>+a’b+z(r+2)b=7rb"+2ra" + 2.
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Now we subtract the second equation of (19) from the first one and get
a’—b’—ab(a—b)+z(r+2)(a—b) = r(r - 2)(a’ - b°).
Since a # b, both sides can be divided by a - b and one gets

a’+b*+7(r+2)=r(r - 2)(a+b). (20)
By adding the second and first equations of (19), we have
(a+b)(@ +b*)+7(r+2)(a+b) =r(r +2)(@° +b*) +4 (21)

Let a+b =x and ab =y. By using (20) and (21) one gets a new system of equations
with respect to x and y that is equivalent to (19):

x> =2y+1(r+2)=7(r —2)x (22)
X*=2xy +7(r+2)x=1(r +2)(x* - 2y) +4

In order to find the number of solutions of the last system we can consider the
following quadratic equation with respect to x:
t(t=2)X* =73 (e? = 4)x+ 1 (r +2)* -4 =0. (23)
[t is easy to check that
?(r* - 4) + \/r(r —2)(¢® +27° —87* — 247° —167° +16)
X1 =
27(r —2)

and

(P -4)- \/r(r —2)(r® +27° —8r" —247° —167° +16)
- 2t(t—-2)

are solutions to the equation (23). Put P(zr) =7°+27° —8¢* — 24¢° —-167° +16. From t

2

> 2 it is sufficient to find only positive roots of P(t). By Descartes’ theorem (e.g. [12])
P(t) has at most two positive roots. Now we find the first derivative of P(t) and get

Q(r) =27(3r" +57° —167° —367 —16)

By Descartes’ theorem Q(t) has at most one positive root. Using Q(2) < 0 and Q(3)
> 0 i.e., by Intermediate Value Theorem we can conclude Q(t) has at least one root in
the segment [2; 3].

On the other hand, P(0) > 0 and P(1) < 0 i.e,, by Intermediate Value Theorem P(t)
has one root in the segment [0; 1]: Hence, P(t) has exactly one positive root which
belongs to the interval (2,«). Let 7, () ~3.22) be the positive root of the polynomial.
Consequently, we can conclude that if 2<7 <z then the system of equations (22) has
not any positive solution. Let 7 =7, then the system (22) has exactly one positive
root. For the case 7>7, then (22) has exactly two positive roots if we can show
x,>0. Namely, after short calculations, 7>7% then we can
show the inequality

72(¢? - 8) —\[1(z = 2)(¢° + 2¢° 8¢ — 247° 1672 +16) .

27(t-2)

is equivalent to the inequality 7> +27-2>0.
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For the case 7>z, from a+b=x and ab=y. (ie{l,2}) after short calculations,

cr

we have two quadratic equations respectively to x, and X,:

2 _ 2
az—Xla—(T 27 1)2)(1 T 22':0

and

(?-2r-Dx,-7*-2r
2

The discriminants are

3c°—27° - 207" +167° +8+(3¢° - 27— 2)\/1(7 —2)(¢® +27° —8r* —247° —167° +16))

a’ —X,a— =0.

Dl,z (r)=

27(r - 2)

Now we find positive zeroes of

3r° —27° 207" +167% +8+(3r° - 27— 2)\/1(1 -2)(r® +2r° -8r* —247° —167° +16)) =0.

A solution to the last equation is also the solution to the following equation:

37° +1677 +47° +1207° —1767° —1287° +1127° + 327 +16 =0.

By Descartes’ theorem R(z)=37%+167" +47° +1207° —1767" —128¢° +1127% + 327 +16
have at most two positive roots. Since R(0) > 0, R(1) < 0; R(2) > 0 and !m R(7) =+ we

can conclude they are not in the interval (2,). Consequently, D,,(z) >0 for any value

ofr e (r¥

or 1)

Finally, we consider the case 7= ré? . From above, it is sufficient to solve the
following equation:

4a’ -2r(r+2)a—7(r +1)(r +2)(r-3) =0.

[ts discriminant is

D(7) = 47(z + 2)(5¢° — 67— 24).

It’s easy to check D(z?) >0, thus there are two positive solutions to (19).

C

Theorem 5. Let r:Jﬂ+%, t? ~2.26.Then for the parameter re(2,7)there

are not any Gradient Gibbs measures associated with a 4-periodic boundary law
satisfying the equality a # b for the model (5) on the Cayley tree of order three.

Proof. Now we consider the case a # b. Then the system of equations (16) can be
written as

a'+ab’ +r(r+2)a=r’a’+2:b* +2;
b*+a’+7(r+2)b=17°b*+2ra’ + 2.

In this case, applying the same solution above one gets system of equations with

(24)

respect to x and y that is equivalent to (24):
x* =3y +r(r +2)x =7(r + 2)(x* —3xy) +4 (25)
X} =3xy+7(r+2) =1(r = 2)(x* - )
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In order to find the number of solutions of the last system we can consider the
following quartic equation with respect to x:

(t=2)x* =72 (r = 2)(r + 2)X° + (¢* + 67° +87° —6)x+27(r —2) =0. (26)

Finding the first and second derivatives of
R(x,7) =7(r =2)X" =% (1 = 2)(r + 2)X* + (r* +67° +87° —6)x+2r(r—2) =0 we get following
two polynomials:

S(x,7) =4r(r —2)x* =3°(r = 2)(r + 2)x* + 7" +67° +87° —6

T(X,7) =127(z - 2)X* —=67°(r — 2)(r + 2)X

[t is clear that 0 and T(T; 2)

are solutions of the equation T(x,7)=0.Now we find

7(r+2)
2

the value of S(x; T) at the point x = and get:

8
W (z) =—%—r7 +47° + 57 +67°+87° 8

It is easy to check that W(0)<0, W(2)>0 and W(3)<0. Let 7(r, =2.26)be the
solution of the equation W(t) = 0: Then for any value of 7 €(2,7,) there exists only one

intersection point of S(x; t) with the negative x-axis. Consequently, using the fact R(0;
T) > 0 we can conclude there would be no positive roots of the equation R(x; t) = 0:
This completes the proof.
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