
JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

232

PROCEDURES AND STANDARD FUNCTIONS IN SQL

Ochilboyev Umidjon Ilxom o‘g‘li

Do‘schanov Bekzod Davronbek o‘g‘li

Ismonaliyev Sanjarbek Qanbaraliyevich

Tashkent University of Information Technologies named after Muhammad al-

Khwarizmi

Abstract: A SQL function is a pre-written, reusable code block to perform a specific

task. It is created and stored in the database and can be called from an SQL statement or

another function. A SQL procedure is a pre-written, reusable code block designed to

perform a specific task or set of tasks.

Keywords: SQL, Stored Procedures, Function, Optional parameter, Parameterized

Queries, SQL Server Management Studio, MySQL Workbench.

Users can encapsulate and reuse SQL code using the potent programming

structures known as stored procedures and functions in SQL. They make it possible for

users to define a group of SQL statements as a unique executable unit that can be used

repeatedly with various inputs, which makes it a crucial tool for managing intricate

databases. Users can write effective, reusable code that can enhance security, ease

maintenance, and improve database performance by becoming fluent in SQL’s stored

procedures and functions. Database administrators and developers who need to create

flexible, efficient SQL code will find this ability to be especially useful. The basic ideas

and methods for learning SQL stored procedures and functions are covered in this

guide, along with examples of how to use them.

In SQL, procedures and standard functions play crucial roles in database

management and manipulation. Here's an overview of each, including their definitions,

usage, and examples

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

233

Procedures, also known as stored procedures, are a set of SQL statements that

can be executed as a single unit. They are stored in the database and can be called by

name, allowing for reusable and modular code.

Usage:

• Encapsulate business logic

• Improve performance by reducing network traffic (as multiple statements are

executed in a single call)

• Ensure consistent implementation of operations

• Simplify complex operations by breaking them into simpler steps

Creating Stored Procedure

Stored procedures are user-defined routines that execute a set of SQL statements.

Creating stored procedures in SQL involves defining a name, parameters (optional),

and the SQL code to be executed. Here’s the basic syntax for creating a stored

procedure in SQL:

CREATE PROCEDURE procedure_name

[@parameter1 datatype [= default_value]]

[,@parameter2 datatype [= default_value]]

AS

BEGIN

SQL code to be executed

END

Let us split down the various components of this syntax:

The keyword build PROCEDURE is used to build a new stored procedure.

The name of the stored process is procedure_name. @parameter is a parameter

that can be given to the stored procedure as an optional parameter. A comma-

separated list can be used to specify multiple parameters.

• datatype defines the parameter’s data type.

• default_value is the parameter’s optional default value.

• AS is the SQL code block’s starting term.

• BEGIN and conclusion indicate the beginning and conclusion of the SQL code

block.

Simple Select Statement:

Here’s an example of a simple stored procedure that executes a select statement:

CREATE PROCEDURE spGetCustomers

AS

BEGIN

SELECT * FROM customers

END

In this example, we’ve defined a stored procedure called spGetCustomers that

returns all rows from the customers table.

Parameterized Queries:

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

234

Stored procedures can also accept input parameters, which can be used to filter

or modify the results of a query. Here’s an example of a parameterized stored

procedure:

CREATE PROCEDURE spGetCustomersByCountry

@country nvarchar(50)

AS

BEGIN

SELECT * FROM customers WHERE country = @country

END

In this example, we’ve created a stored procedure called

spGetCustomersByCountry that takes a single parameter of type nvarchar named

@country.(50). Following that, the stored procedure runs a select statement that

filters the customers database based on the value of the @country parameter.

Transactions:

Transactions, which guarantee that a group of SQL statements are executed as a

single unit of work, can also be performed using stored procedures. If any part of the

transaction fails, the entire transaction is rolled back. Here’s an example of a stored

procedure that performs a transaction:

CREATE PROCEDURE spTransferFunds

@from_account nvarchar(50),

@to_account nvarchar(50),

@amount decimal(18,2)

AS

BEGIN

BEGIN TRANSACTION

UPDATE accounts SET balance = balance - @amount WHERE account_number =

@from_account

UPDATE accounts SET balance = balance + @amount WHERE account_number =

@to_account

COMMIT TRANSACTION

END

In this instance, spTransferFunds is a stored procedure that accepts three

arguments: @from_account, @to_account, and @amount. After that, the stored

procedure executes two update statements that move the specified amount from the

from_account to the to_account and deduct the specified amount from the

from_account. The stored procedure then commits the action to the database.

The ability to write SQL stored procedures is essential for database

administrators and developers. Complex databases can be handled more easily thanks

to stored procedures, which enable the encapsulation and reuse of SQL code.

Developers can write effective and reusable SQL code that boosts database

performance, makes maintenance easier, and increases security by becoming familiar

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

235

with the syntax for creating stored procedures and understanding the different kinds

of stored procedures.

Executing Stored Procedures:

Stored procedures are precompiled collections of SQL statements that are run

repeatedly and saved in a database. They make database administration more effective

and flexible by enabling users to encapsulate and reuse code. The procedures listed

below should be followed in order to run a stored procedure from a SQL client like SQL

Server Management Studio or MySQL Workbench:

Join the database:

Connecting to the database containing the stored procedure is the first stage. The

UI of the SQL client can be used for this.

Where to find the saved procedure.

The stored method should then be found in the database. This can be

accomplished by searching the SQL client or perusing the database’s schema.

The stored process should be run:

Right-click on the saved procedure to launch it.

Parameter Passing:

Stored procedures can be executed with parameters that allow for flexible and

dynamic execution. There are different ways to pass parameters to a stored procedure,

including:

Positional Parameters:

Positional parameters are passed to the stored procedure based on their position

in the parameter list. For example, if a stored procedure has three parameters, the first

parameter will be passed first, followed by the second parameter and then the third

parameter.

Named Parameters:

Named parameters are passed to the stored procedure based on their name

rather than their position. This allows for more flexible parameter passing and makes

the stored procedure easier to read and maintain.

Handling Return Values:

Stored procedures can return values to the calling program or client. There are

different ways to handle return values from a stored procedure, including:

Output Parameters:

Output parameters are used to return values from a stored procedure. They are

declared in the stored procedure and assigned a value within the stored procedure.

The calling program or client can then retrieve the output parameter’s value.

Result Sets:

Stored procedures can return result sets that contain one or more rows of data.

The calling program or client can then retrieve the result set and process the data.

Return Codes:

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

236

Stored procedures can also return a single return code that indicates whether the

stored procedure was executed successfully or not. The calling program or client can

then use the return code to determine the next course of action.

Executing stored procedures is a powerful feature of SQL that allows users to

encapsulate and reuse code. By passing parameters and handling return values, users

can make their stored procedures more flexible and dynamic. Understanding how to

execute stored procedures and work with their parameters and return values is

essential for any database developer or administrator.

Debugging Stored Procedures:

Database developers and admins must debug stored procedures on a regular

basis. It is the process of detecting and correcting errors or bugs in SQL code so that it

works as expected. This section will go over various debugging techniques for stored

procedures, such as using print statements, setting breakpoints, and examining

execution plans.

Using Print Statements

Using print statements is one of the easiest and most efficient methods to debug

stored procedures. These statements give programmers the ability to print out

variable values and other significant data while a stored function is being executed.

The source of errors can be swiftly found and fixed by developers by looking at the

printed output.

Difference between stored procedure and function

Developers only need to add the display command then the variable or value they

want to display in order to use print statements. Developers can use the following

code, for instance, to display a value that a stored procedure should have returned but

did not:

Print @myValue

Setting breakpoints

Setting breakpoints is another efficient technique for troubleshooting stored

processes. Breakpoints allow programmers to halt the execution of a stored function at

a specific point in order to examine the state of the code. This method is particularly

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

237

useful when dealing with complicated stored procedures that have numerous steps

and conditions.

Using Functions in Queries:

It is possible for SQL functions to take input parameters, carry out a series of

actions, and then return a result. Functions can be used in SQL queries to improve

query performance, reduce code duplication, and simplify and streamline complicated

processes. The use of user-defined functions in SQL queries, including how to send

parameters to them and handle return values, will be covered in this section.

Creating User-Defined Functions:

A user-defined function must first be made before it can be used in a SQL query.

The CREATE FUNCTION statement, which defines the function name, input

parameters, and return data type, can be used to create a user-defined function. Any

legitimate SQL code, such as SELECT, UPDATE, and DELETE commands, may be

included in the function body.

Passing Parameters to Functions:

Functions take a number of input parameters — zero or more — that can be used

to change how they behave. When calling a function, we can define parameters by

enclosing them in parentheses. The amount of parameters and their corresponding

data types must line up with the function’s definition.

For example, consider the following function definition:

CREATE FUNCTION dbo.GetTotalSales(@StartDate DATE, @EndDate DATE)

RETURNS MONEY AS BEGIN DECLARE @TotalSales MONEY; SELECT @TotalSales

= SUM(OrderTotal) FROM Orders WHERE OrderDate BETWEEN @StartDate AND

@EndDate; RETURN @TotalSales; END

This function takes two input parameters, @StartDate and @EndDate, which are

used to filter the Orders table and calculate the total sales within the specified date

range. To call this function and pass the required parameters, we can use the following

syntax:

SELECT dbo.GetTotalSales('2022-01-01', '2022-12-31') AS TotalSales;

This will return the total sales for the year 2022.

Handling Return Values:

Any data type, including scalar values like integers, floats, and strings, as well as

more sophisticated data types like tables and cursors, can be returned by a function as

a singular value. We can either give the return value of a function to a variable or use it

directly in an expression to handle it in a SQL query.

For example, consider the following function definition:

CREATE FUNCTION dbo.GetCustomerOrders(@CustomerID INT)

RETURNS TABLEAS RETURN

(SELECT * FROM Orders WHERE CustomerID = @CustomerID);

This function returns a table of all orders placed by a given customer. To use this

function in a SQL query, we can call it as follows:

JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH

VOLUME-7 ISSUE-5 (30- May)

238

DECLARE @Orders TABLE (OrderID INT, OrderDate DATE, OrderTotal MONEY);

INSERT INTO @Orders

SELECT OrderID, OrderDate, OrderTotal

FROM dbo.GetCustomerOrders(123);

SELECT * FROM @Orders;

This will insert the results of the dbo.GetCustomerOrders function into a

temporary table @Orders, which can then be used in subsequent queries.

Using user-defined functions in SQL queries can greatly simplify and streamline

complex operations, allowing for improved query performance and reduced code

duplication. By mastering the use of functions, developers can create more efficient

and maintainable SQL code.

Conclusion

Finally, mastering SQL stored procedures and functions is a valuable talent for

anyone who works with databases. Stored procedures and functions can improve

database speed, simplify maintenance, and increase security by encapsulating and

reusing SQL code. User-defined functions can also be used in SQL queries to simplify

complex operations and minimise code duplication. Understanding how to build, call,

and manage stored procedures and functions, as well as using user-defined functions

in SQL queries, can result in more efficient and maintainable SQL code. Developers and

administrators can use this knowledge to better manage and utilise the power of

databases to meet the requirements of their organisations.

REFERENCES:

1. Patrick O’Neil and Elizabeth O’Neil, Database Principles, Programming and

Performance, Harcourt Asia Pte. Ltd., First Edition, 2001.

2. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and

Management, Thomson Learning-Course Technology, Seventh Edition, 2007.

3. C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database

Systems, Pearson Education, Eighth Edition, 2009.

4. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System

Concepts, McGraw-Hill Education (Asia), Fifth Edition, 2006.

5. Atul Kahate, Introduction to Database Management Systems, First Edition,

2006

