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Theorem.  Let  ,n iX be a triangular array of mean zero random variables. For each 

1,2,...n   let nd d , nm m  and suppose ,1 ,,...,n n dX X  is an m-dependent sequence of 

random variables.  Define 
1

2

, , , ,
a k

n k a n i

i a

B Var X
 



 
  

 
  

2

, ,1 ,

1

d

n n d n i

i

B B Var X


 
   

 
 . 

Assume the following conditions hold. For some 0   and some 1 1   : 
2

,n i nE X

   for all i ,                                                                                         (1) 

2 1

, , / ( )n k a nB k K   for all a  and for all k m ,                                                       (2) 

2 1/ ( )n nB dm L   ,                                                                                                      (3) 

/ (1)n nK L O ,                                                                                                        (4) 

(2 )/2/ (1)n nL O                                                                                                     (5) 

2 (1 )(1 2/ ) / 0m d                                                                                                     (6) 

Then,  1

,1 ,( ... ) 0,1n n n dB X X N     

Proof  of  Theorem .  In the proof we will need a result for bounding moments of m-

dependent sequences. We will state it as a corollary of the following lemma, which 

implicitly is given in Chow and Teicher (1978) and deals with independent sequences. 

Lemma A.1.  Let  iY  be an independent sequence of mean zero random variables. 

Assume 
q

iE Y    for some 2q  and all i . 

Then,   
/2

1

q
n

q q

i q

i

E Y C n


   

Where qC  is a positive constant depending only upon q . 

Proof. See Theorem 2 and Corollary 2 in Section 10:3 of Chow and Teicher (1978). 

Corollary A.1.  Let  iX  be an m-dependent sequence of mean zero random variables. 

Assume 
q

iE X    for some 2q   and all i . 
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Then,  for all 2n m , 

/2

1

(4 )

q
n

q q

i q

i

E X C mn


   

where qC  is a positive constant depending only upon q . 

Proof. Define  /t n m  where   denotes the integer part.  Now split 
1 ... nX X   

into t  blocks of size m  and a remainder block:  
1 1 1... ...n t tX X A A A       Due to 

m -dependence, the odd-numbered blocks are independent of each other, as are the even-

numbered blocks. This allows us to apply Lemma A.1: 

1  odd  

n

i i i

i i i evenq q q

X A A


     (by Minkowski) 

1/ 1/22 ( ) ( / 2 1)q

qC m t      (by Lemma A:1 and  Minkowski): 

But, this is equivalent to 

/2

1

2 ( / 2 1)

q
n

q q q q

i q

i

E X C m t


    

/2 /2 /22 ( ) 2 ( ) (4 )q q q q q q q q q

q q qC m t C mn C mn      . 

We are now able to prove the theorem. The main idea of the proof follows Berk (1973), 

but we need some modifications, since our theorem is more general. 

For each n , we choose an integer 2np p m   so that 

lim  / 0
n

m p


 ,          
1 (1 )(1 2/ )lim / 0

n
p d   


 .                                                         (7) 

This can be done, for example, by remembering assumption (6) and choosing  p  to be 

the smallest integer greater than 2m  and greater than 1/2 1/2m d  , where   is equal to  

1 (1 )(1 2 / )    . Next, define integers nt t  and  
nq q  by d pt q  , 0 q p  . 

The main idea of the proof is to split the sum  ,1 ,...n n dX X   into alternate  blocks  of  

length p m  (the big blocks) and m  (the little blocks). This is a common approach to 

proving central limit theorems for dependent random variables, and is attributed to Markov 

in Bernstein (1927).  Let 

, ,( 1) 1 ,...n i n i p n ip mU X X     , 1 i t  , 

, , 1 ,...n i n ip m n ipV X X    ,   1 i t   

, , 1 ,...n t i n tp n dU X X    . 

By definition, 
1

,1 , , ,1 1
...

t t

n n d n i n ii i
X X U V



 
     . Since the ,n iX  are m -

dependent  and 2p m ,  ,n iU  and   ,n iV  are each independent sequences. It is easily 

seen that the difference between 1

,1 ,( ... )n n n dB X X   and has variance approaching zero. 

Indeed, 
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 11 2

, ,1
1

( )
l

t

n n i n n ii
i

Var B V B Var V
 




   

2 2 1

,sup  ( )n n i n n
i

B t Var V B tK m    
 

  
     (by assumption (2)) 

2 1( / )n nB d p K m    

0n

n

K m

L n
        (by assumption (3) and (4)). 

Hence, provided they exist, the asymptotic distributions of the two quantities 
11

,1

t

n n ii
B U



  and 1

,1

d

n n ii
B X

 are the same, and the goal now is to show that 

 
11

,1
0,1

t

n n ii
B U N




 . 

In order to apply assumption (3) again, we will first establish that  12

,1

t

n n ii
B Var U



  

tends to one, or, equivalently,  12

, ,1 1
,

t t

n n i n ii i
B Cov U V



    tends to zero.  Note first 

that  , ,, 0n i n iCov U V   unless j i  or 1i  . Furthermore, 

   
1/2

, , , , , ,, , ( ) ( )n i n i n i n i n i n iCov U V E U V Var U Var V      

(1 )/2( )nK mp    (by assumption (2)). 

Combining  these  two  facts, we  obtain   1 (1 )/2

, ,1 1
, 2 ( )

t t

n i n i ni i
Cov U V K mp  

 
   

and finally, 

 
(1 )/212

, ,1 1
, 2 ( )

t t
n

n n i n ii i
n

K t
B Cov U V mp

L dm







 
   

(1 )/21
2 ( )n

n

K
mp

L pm







  

(1 )/2

2 0n

n

K m

L p


 

  
 

  (by assumption (4)  and  since 1  ). 

By  Lyapounov's  theorem, it will now suffice to verify that 
21 2

,1
/

t

n i ni
E U B

  

  

tends to zero. By Corollary A.1, 
2 2 (2 )/2

, 2 (4 )n i nE U C pm
  



  

  ,   1 1i t   , 

And therefore 
21 2 (2 )/2 2

,1
/ . ( / 1)( ) /

t

n i n n ni
E U B Const d p pm B

      


    

By assumption (3), finally, 
(2 )/2

(2 )/2 2 (2 )/2( / )( ) /n n n n

d pm
d p pm B L

p dm



  





     
    

 
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/2

(2 )/2 (1 )(2 )/2

n n

p
L m

d



      
   

 
 

 1O AB   (by assumption (5)); 

where /2 (1 )(2 )/2 /2A p d        and 

(1 )(2 )/2

m
B

p

  

 
  
 

.  The second condition on p  in 

(7) implies  that  A  tends to zero. The first condition on p  in (7), together with the fact 

that  1  ,  imply that B  tends to zero as well. 
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