5 APREL / 2024 YIL / 38 - SON

АНАЛИЗ ИССЛЕДОВАНИЙ ГЕОЛОГИЧЕСКОЙ И ГЕОДИНАМИЧЕСКОЙ СИТУАЦИИ, ГИДРОГЕОЛОГИЧЕСКИХ И ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ УСЛОВИЙ ОБЪЕДЕННОГО ХВОСТОХРАНИЛИЩА МЕСТОРОЖДЕНИЯ КАЛЬМАКЫР

Г. М. Самадова

декан «Горного» факультета ТГМИ. г. Худжанд. Таджикистан

С. И. Эркабаева

ассистент кафедры «Горное дело» АФ ТГТУ. г. Алмалык. Узбекистан

У. А. Ахмадов

ассистент кафедры «Горное дело» АФ ТГТУ. г. Алмалык. Узбекистан

Д .А.Обиджонов

студент кафедры «Горное дело» АФ ТГТУ. г. Алмалык. Узбекистан

Характеристика климатических условий района расположения ОХХ. Климат района расположения ОХХ резко континентальный с жарким летом и холодной зимой.

Среднемесячная температура воздуха по метеостанции Алмалык приведена в таблице 1.

Таблица 1.

I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
0,8	2,9	7,4	14,8	20,9	25,5	28,5	28,8	21,2	14,3	7,3	2,2

Среднегодовая температура воздуха +14,2 °C.

Абсолютный максимум температуры +40 °C.

Преобладающее направление ветра – восточное, юго-восточное и западное. Наибольшей скоростью обладают ветра восточных и юго-восточных направлений. Среднегодовая скорость ветра составляет 2,9 м/сек. Максимальная скорость ветра – 20 м/сек. Ветровая нагрузка 38 кг/см2. Сейсмичность площадки – 8 баллов.

Инженерно-геологические условия площадки ОХХ и прилегающих территорий. Хвостохранилище в геоморфологическом отношении занимает территорию, представленную холмистой предгорной равниной.

В геологическом строении площадки хвостохранилища принимают участие мощные аллювиально-пролювиальные отложения Ташкентского и Голодностепского комплексов, представленными лессовидными суглинками и валунно-галечниковыми отложениями (Рис. 1.). Также залегают конгломераты и песчаники неогена. По данным исследований различных организаций, по имеющимся показаниям скважин и шурфов на хвостохранилище, можно отметить, что залегание лессовидных суглинков и галечниковых отложений не выдержанны по мощности и простиранию.

Для грунтов характерна структурная неустойчивость при увеличении степени влажности, что приводит к деформациям грунтов при водонасыщении как под действием нагрузки, так и под действием собственного веса.

5 APREL / 2024 YIL / 38 - SON

Как видно из геологического разреза повсюду развиты светло-коричневые, с желтоватым оттенком, легкие, пылеватые, макропористые, маловлажные, с включением карбонатных конкреций (5-10 %), встречаются линзы и прослои супеси мощностью 0,1-0,2 м. естественная влажность суглинков 4,5-17 %. С глубины 19,0 м суглинки становятся водонасыщенными коричневато-серыми и отмечается увеличение содержания грубообломочного материала (20%). Изучение просадочных свойств показало, что отмечаются участки со слабой и достаточно сильной просадочностью.

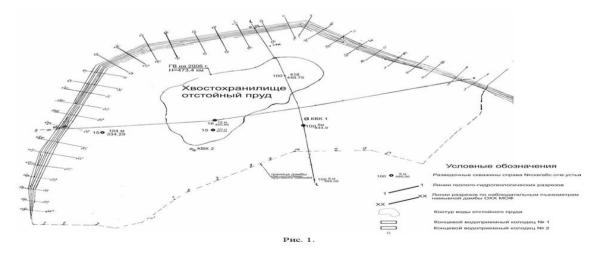
Относительная просадочность составляет 0,016-0,129. Изучением физических свойств грунтов подстилающей толщи хвостохранилища и прилагающих территорий. Данные исследования приведены в табл. 2.

В естественном состоянии:

-модуль деформации

 $61-202 \, \text{кг/см}3$

-угол внутреннего трения $24-24^{\circ}$


-спепление

0,150-0,337 kg/cm3.

Геологическая и гидрогеологическая характеристика ОХХ. В геологическом строении площади дамбы ОХХ участвует сложный комплекс аллювиальных и делювиальных пород, это залегающая у дневной поверхности покровная толща и залегающая под ней веернообломочная.

Покровная толща представлена обломками дресвы и гравийного материала, сцементированных супесью, суглинком и глиной.

На ПК 126 - ПК 205 покровная толща, с большим содержанием глины, супеси и суглинка. Мощность ее до 35 м. ПК 205 - 232, левобережье Джарбулаксая, покровная толща представлена рыхлыми отложениями с включением глины, супеси и дресвы. Мощность до 48м.

5 APREL / 2024 YIL / 38 - SON

Геолого-литологический разрез через территорию объединенного хвостохранилища по линии 1-1 Масштабы: горизонтальный 1:25000 вертикальный 1:10000

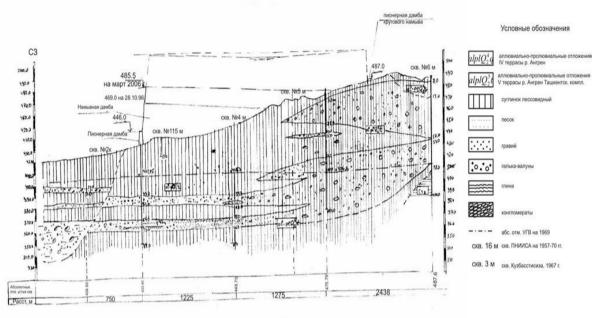


Рис. 2.

Веернообломочная толща представлена мощными галечниковыми и песчанногалечниковыми отложениями, переходящие из головной части конуса выноса саев, частично выклинивающиеся и расщепленные на несколько этажей пластами суглинков и глин, мощность которых колеблется от 1,0м до 20,0м., Мощность самой толщи по данным бурения до 60м.

В гидрогеологическом плане покровные породы содержат слабоподвижные грунтовые воды, которые образовались за счет фильтрации прудка дамбы ОХХ и представляют техногенный водоносный комплекс.

Веернообломочный водоносный комплекс содержит воды в галечниковых породах зажатых между слабопроницаемыми породами, в результате чего поток подпружинивается и приобретает субнапорный характер.

Два потока техногенный и веернообломочный находятся в **тесной гидравлической связи,** вследствие чего происходит открытая разгрузка - это русловые выклинивания саев, заболачивание депрессионных участков и увлажнение откосов в нижнем бъефе дамбы.

По результатам полученных анализов влажности, объемный вес сухого скелета намывных песков, в слое мощностью 120 мм, уложенных в тело дамбы находится в пределах 1,83 г/см³- 1,14 г/см³, в среднем ниже проектной -1,50г/см . По результатам гранулометрического анализа, в слое мощностью 120мм., содержание класса фракции - $0,074\pm0,074$ от 1,5% до 91%, в среднем ниже проектной -65%, класса фракции - $0,3\pm0,2$ от 4% до 67%, в среднем выше проектной- 13%, класса фракции- $1,651\pm0,417$ от 0 до 46 в среднем выше проектной - 0%.

Гранулометрический состав намывного слоя. Диаграмма зависимости укладываемого скелета, слоя мощностью 120 мм, от расстояния конуса выноса

5 APREL / 2024 YIL / 38 - SON

пульпы. Проектный объемный вес скелета намывных песков 1 5 г/см³, По результатам анализа имеет разбег на 75м от 1,1г/см до 1,82г/см³ . На ПК126-50 - 134 после снятия бульдозером слоя мощностью 4,5 м, для отсыпки дамбочки обвалования, объемный вес скелета на 5 м составил 1,52-1,56 г/см³, на 25 м - 1,33-1,56 г/см³, на 75м - 1,37-1,56 г/см³, на 100м-1,22-1,56 г/см³ и на 150м 1,33-1,44г/см³

Геотехническое состояние ОХХ. Внешняя часть дамбы изменилась незначительно. Углы внешнего борта дамбы находятся в пределах 14°-20°. Частота промоин на откосах дамбы в среднем 1 на 25м – 30м, ширина промоин от 3м и меньше, глубина от 1,5м и меньше, длина на уступ, редко на 2 уступа. На ПК 149-150 от гор. +480 до гор. +457 (нижний бьеф) оползание откоса по ложковому саю. На ПК 137-211 ниже горизонта +460 отмечаются просадки откосов и их сползание.

Рис 3.

Внутренняя – **пляжная** часть дамбы имеет размоины пляжа на ПК 126-158, 198-212, шириной у трубы 2м-3м, глубиной от 2,5м и меньше, далее по конусу выноса длиной 150-200м глубина уменьшается до 0,3м. Азимут направления размоин 80° - 120° . На ПК140-157,185-196 отмечены намывы небольших гряд.

Разрывные нарушения. В южной части дамбы отмечены разрывные нарушения между ПК 219-232 под пионерной дамбой в радиусе 10м-500м, а также за границей РУз. Мощность трещин от 0,1м до 1,2м, глубина до 2,0м, протяженность до 25м. За период наблюдений отмечено раскрытие трещин на 2-3см.

Трещины разрыва. Вертикальные трещины разрыва отмечаются за пределами дамбы в нагорной ее части.

В южной части, отмечены между ПК 219-232 по склонам ложковых саев и за автодорогой кругового намыва, в радиусе 10м-500м, от пионерной дамбы, а также за границей РУз. Мощность трещин от 0,3м до 1,8м, глубина до 2,5м, протяженность до 125м. За период наблюдений отмечено раскрытие трещин и их обрушение. В районе ПК209, вдоль бермы пионерной дамбы появилась трещина шириной 0,02м, протяженностью 25м.

В северной части дамбы, также отмечаются вертикальные трещины разрыва между Π K129+50-138 прослежены от пульповодов до канала. мощность от 0,15м до 0,5м, глубина до 1,5м. На Π K129+50 по конусу выноса сая (овраг) отмечается серия глубоких промоин. На дне оврага, протяженностью на всю ширину оврага, отмечена

5 APREL / 2024 YIL / 38 - SON

промоина в виде прямолинейной канавы шириной 0,25м, глубиной 0,05-0,1м. На ПК 137-139 на поверхности холма отмечены цирки – тарелкообразной формы.

Оползание склона пионерной дамбы от подошвы, на высоту 0,5м-1,5м, шириной от 1,5м до 5м, отмечено на ПК164+50,170 и176.

Просадочные явления отмечаются по основанию пионерной дамбы на ПК 131, 132, 135-136, 164+50-165 в виде цирков, размером 10м х 2,0м х 0,1м и меньше. В районе наблюдательной СКВ. 12H (за ПНС-3) отмечена просадка в виде дуги, протяженностью 10м, шириной до 0,2м, глубиной 0,03м-0,05м.

В целом геотехническое состояние внешних откосов дамбы изменилось незначительно. Однако увеличилось количество промоин: их ширина, глубина и длина. По периметру дамбы добавились норы животных, диаметром 0,6м-0,1м, частота нор - 1 на 35м.

Рис 1.4.1

Рис 1.4.2

Выводы. Неустановившиеся геомеханические процессы в ограждающих сооружениях намывных накопителей определяют свой механизм деформирования откосов дамб хвостохранилищ, отличающийся от механизма деформирования бортов карьеров, естественных откосов, грунтовых гидротехнических сооружений в энергетическом и мелиоративном строительстве.

Периодическое изменение геометрических параметров и горно-геологических условий эксплуатации дамб хвостохранилищ определяет рассмотрение деформационных процессов, происходящие в теле таких сооружений, в динамичном их развитии.

Деформации дамбы хвостохранилища отмечаются с начала их строительства и обусловлены консолидацией тела дамбы. Опасные с точки зрения устойчивости деформации в дамбах появляются разновременно, вначале горизонтальные, а на более поздней стадии вертикальные. Околопредельное состояние дамбы наступает с появлением увеличивающихся скоростей вертикальных деформаций, значительно превышающих деформации консолидации тела дамбы.

Построение математической модели осадки намывных дамб хвостохранилищ, являющейся основой обоснования точности и периодичности, следует выполнять на основе результатов натурных наблюдений и заключается в разделении процесса

5 APREL / 2024 YIL / 38 - SON

деформирования горных пород на несколько периодов. Такой подход к решению задачи соответствует характеру развития деформаций во времени.

СПИСОК ЛИТЕРАТУРЫ:

- 1. Курбанбаев Д. М. и др. ВИДЫ, СВОЙСТВА И ОТРАСЛИ ПРИМЕНЕНИЕ ИЗВЕСТНЯКОВ //Uzbek Scholar Journal. 2022. Т. 11. С. 28-32.
- 2. Erkaboeva S. I., Sulxonov D. A. QAZILGAN BOʻSHLIQNI TOʻLDIRIB QAZISH TIZIMI //Научный Фокус. 2023. Т. 1. №. 2. С. 1342-1344.
- 3. Erkaboeva S. I., Sulxonov D. A. QAZISH TIZIMINI TANLASHGA TA'SIR ETUVCHI OMILLAR //JOURNAL OF INNOVATIONS IN SCIENTIFIC AND EDUCATIONAL RESEARCH. 2023. T. 6. №. 6. C. 204-206.
- 4. Nodirova S. M., Erkaboyeva S. I. SHAXTA ATMOSFERASINI IFLOSLANTIRUVCHI MANBALAR //Uzbek Scholar Journal. 2022. T. 10. C. 86-90.
- 5. Erkaboyeva S. I., Nishanov A. I. YER OSTI KON ISHLARIDA QOʻLLANILADIGAN QAZIB OLISH TIZIMLARIDA XAVFSIZLIKNI TAʻMINLASH TADBIRLARI //Uzbek Scholar Journal. 2022. T. 10. C. 102-106.
- 6. Гаибназаров Б. А., Алимов Ш. М., Эркабоева С. АНАЛИЗ ТЕХНОЛОГИЙ ФОРМИРОВАНИЯ СКВАЖИННЫХ ЗАРЯДОВ С ПРИМЕНЕНИЕМ НЕВОДОУСТОЙЧИВЫХ ВВ ПРИ ДРОБЛЕНИИ ГОРНЫХ ПОРОД В ОБВОДНЕННЫХ УСЛОВИЯХ НА КАРЬЕРАХ //Oriental renaissance: Innovative, educational, natural and social sciences. 2023. Т. 3. №. 1. С. 168-179.
- 7. Нодирова Ш. М., Эркабаева С. И., Муталова М. А. РАЗРАБОТКА И ИЗУЧЕНИЕ РАЗДЕЛЕНИЯ СВИНЦОВО-МЕДНОГО КОНЦЕНТРАТА С ПРИМЕНЕНИЕМ СУЛЬФИТА НАТРИЯ В КАЧЕСТВЕ ДЕПРЕССОРА ДЛЯ МИНЕРАЛОВ СВИНЦА //Uzbek Scholar Journal. 2022. Т. 11. С. 58-62.
- 8. Шамаев, М. К. ., Ахмадов, А. У. ., Рахматуллаев, И. М. ., & Тоштемиров, У. Т. . (2022). ИЗВЕСТНЯК В ПРИРОДЕ, ТЕХНОЛОГИЯ ПРОИЗВОДСТВА И НЕКОТОРЫЕ ИХ СВОЙСТВА ПРИ ИСПОЛЬЗОВАНИИ. ARXITEKTURA, MUHANDISLIK VA ZAMONAVIY TEXNOLOGIYALAR JURNALI, 1(4), 26–30. Retrieved from https://sciencebox.uz/index.php/arxitektura/article/view/4911
- 9. Рахматуллаев Искандар Махмуд ўғли, Қулмонбетов Асадбек Юсуфали ўғли. КОНТУРНОЕ ВЗРЫВНИЕ ПРИ ПОДЗЕМНЫХ ГОРНЫХ РАБОТ. Журнал «Новости образования: исследование в XXI Том 1 № 4 (2022). http://nauchniyimpuls.ru/index.php/noiv/article/view/1321
- 10. CENTRAL ASIAN ACADEMIC JOURNAL OF SCIENTIFIC RESEARCH. Искандар Махмуд ўғли Рахматуллаев .Разработка эффективный способа буровзрывных работ обеспечивающый проектный сечения горизонтальных подземных горных выроботок (pp. 63-67). https://caajsr.uz/storage/app/media/2-3.%20012.%2063-67.pdf
- 11. Рахматуллаев Искандар Махмуд ўғли. Напряженное Состояние Горного Массива И Факторы, Влияющие На Механические Свойства Горных Пород.

5 APREL / 2024 YIL / 38 - SON

CENTRAL ASIAN JOURNAL OF THEORETICAL AND APPLIED SCIENCES 2022/6. 65-69 ct.

https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/612

- 12. Регулирование режима горных работ и экономические показатели планирования.БШ Шакаров, ИМ Рахматуллаев Uz ACADEMIA, 2021.
- 13. Zuxritdinov D. X. YER OSTIDA ISHLAYDIGAN KON ISHCHILARINING HARAKAT XAVFSIZLIGINI TA'MINLASHDA RAQAMLI TEXNOLOGIYALARDAN FOYDALANISH //O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. 2023. T. 2. №. 17. C. 549-552.
- 14. Davron Z. et al. SHAXTA SUVLARIDAN FOYDALANISHDA ENERYIGA SAMARADORLIGINI OSHIRISH USULI //PROSPECTS OF DEVELOPMENT OF SCIENCE AND EDUCATION. 2023. T. 1. №. 6. C. 11-14.
- 15. Zuxritdinov D. X., Nishanov A. I. KONCHILIK TRANSPORTLARIDA YONGʻINGA QARSHI YANGI TEXNOLOGIYALARDAN FOYDALANISH //Finland International Scientific Journal of Education, Social Science & Humanities. − 2023. − T. 11. − №. 4. − C. 368-372.
- 16. Davron Z. et al. SHAXTA SUVLARIDAN FOYDALANISHDA ENERYIGA SAMARADORLIGINI OSHIRISH USULI //PROSPECTS OF DEVELOPMENT OF SCIENCE AND EDUCATION. 2023. T. 1. №. 6. C. 11-14.
- 17. Turgʻunov F. F., Abdiyev O. X. MAʻDANLI KARYERLARNING CHUQUR GORIZONTLARINI QAZIB OLISHDA MEXANIZATSIYALASH VOSITALARI VA TEXNOLOGIK OʻLCHAMLARINI ASOSLASH //OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. 2022. T. 1. №. 8. C. 678-680.
- 18. Turgʻunov F. F. ANGREN RAZREZIDA QOʻLLANILAYOTGAN EKSKAVATOR CHOʻMICHI KESUVCHI ELEMENTLARINING ISHLASH MUDDATINI OSHIRISH //Uzbek Scholar Journal. 2023. T. 14. C. 37-39.
- 19. Turgʻunov F. F., Nishanov A. I. RESPUBLIKAMIZDAGI KOʻMIR KONLARI VA ULARNI QAZIB OLISHDA PORTLATISH ISHLARINI GIDROZABOYKALAR YORDAMIDA AMALGA OSHIRISH //IJODKOR OʻQITUVCHI. 2023. T. 3. №. 33. C. 168-173.
- 20. Maxmudjanovich X. T. et al. FOYDALI QAZILMA KONLARINI OCHIQ USULDA QAZIB OLISHDAN BOʻSHAGAN MAYDONLARNI REKULTIVATSIYASI QILISH //OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. 2023. T. 2. №. 15. C. 738-741.
- 21. Axbaraliyevich E. M. FOYDALI QAZILMA KONLARINI OCHIQ USULDA QAZIB OLISHDAN BOʻSHAGAN MAYDONLARNI REKULTIVATSIYASI QILISH JARAYONINING BOSQICHLARI //IJODKOR OʻQITUVCHI. 2023. T. 3. №. 26. C. 226-228.
- 22. Ergashev M. A., Oʻralboyeva D. F. YOSHLIK 1 KONIDA SKVAJINA ZARYADI KONSTRUKSIYASINING MAQBUL TURINI TANLASH VA ASOSLASH

5 APREL / 2024 YIL / 38 - SON

- //OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR IURNALI. 2022. T. 2. №. 13. C. 668-670.
- 23. Axbaraliyevich E. M. et al. YOSHLIK 1 KONI SHAROITIDA PORTLATISH ISHLARINI SAMARALI OLIB BOORISH UCHUN PORTLOVCHI MODDANING MAQBUL TURINI TANLASH //OʻZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI. 2023. T. 2. №. 18. C. 126-128.
- 24. Ахмадов А. У., Мельникова Т. Е., Тоштемиров У. Т. АНАЛИЗ МИКРОКЛИМАТИЧЕСКИХ УСЛОВИЙ КАРЬЕРА КАЛЬМАКЫР //Евразийский журнал академических исследований. 2022. Т. 2. №. 12. С. 1207-1216.
- 25. Qizi U. X. S. KARYERLARDA BALAND POGʻONALARNING TURGʻUNLIGINI OSHIRISH //Taʻlim fidoyilari. 2023. T. 4. №. 1. C. 116-120.
- 26. Носиров У. Ф., Усмонова Х. С. К. НАУЧНОЕ ОБОСНОВАНИЕ БУРОВЗРЫВНЫХ РАБОТ НА БОЛЬШИХ ВЫСОТАХ В УСЛОВИЯХ КАЛЬМАКЫР КОНИ //Oriental renaissance: Innovative, educational, natural and social sciences. 2021. Т. 1. № 4. С. 364-368.
- 27. Erkaboyeva S. I., Sulxonov D. A., Ulashov D. Z. CHUQUR KARYERLARDA RESURSLARNI TEJAYDIGAN VA EKOLOGIK TOZA TRANSPORT TIZIMI //IMRAS. 2023. T. 6. № 8. C. 153-157.
- 28. Erkaboeva S. I., Sulxonov D. A., Ramanov X. S. BIR YARUSLI AGʻDARMALARNI XOSIL QILISH NAZARIYASI VA AMALIYOTINI OʻRGANISH //THE THEORY OF RECENT SCIENTIFIC RESEARCH IN THE FIELD OF PEDAGOGY. 2024. T. 2. №. 17. C. 49-51.
- 29. Isakulov F. U. ANGREN KOʻMIR KONI MISOLIDA BURG ʻILASH QURULMALARINI ISH UNUMDORLIGINI OSHIRISH //IMRAS. 2024. T. 7. №. 1. C. 275-279.
- 30. Turgʻunov F. F., Zuxritdinov D. X. ANGREN KON BOSHQARMASIGA QARASHLI RUDA SHAXTALARDA MUSTAHKAMLASH VOSITALARDAN FOYDALANISHNING SAMARALI USULI //IMRAS. 2024. T. 7. №. 1. C. 591-612.
- 31. Erkaboyeva S. I., Malikov M. A. CHUQUR KARYER BORTLARINING QIYALIGIDA ICHKI AG 'DARMALARNI XAVFSIZ SHAKLLANTIRISH SHARTLARINI TADQIQ QILISH //IMRAS. 2024. T. 7. № 1. C. 174-179.
- 32. Azimov O. A. et al. KARYER SUVLARIDAN OQILONA FOYDALANISH ORQALI, KARYERLARDA CHANG VA ZAHARLI GAZLARNI NEYTRALLASHTIRISH //International Journal of Education, Social Science & Humanities. 2024. T. 12. №. 3. C. 1-7.
- 33. FF Turgʻunov, DX Zuxritdinov YOSHLIK-1 KARYERI MISOLIDA RUDA ZAXIRASINI QAZIB OLISHDA HOSIL BOʻLGAN NOGABARIT BOʻLAKLARNI ELEKTR ZARYAD USULI BILAN MAYDALASH ASOSLARI // IJODKOR OʻQITUVCHI. 2024. T. 4. №. 37. C. 74-81.

5 APREL / 2024 YIL / 38 - SON

- 34. S.D. Ahror oʻgʻli, N.T. Jaloliddin oʻgʻli, Z.D. Xusniddin oʻgʻli. SHAXTA SHAMOLLATISH TIZIMIDAN FOYDALANIB MEXANIK ENERGIYANI ELEKTR ENERGIYASIGA AYLANTITISH. // IJODKOR OʻQITUVCHI, 2024. T. 4. №. 37. C. 170-174.
- 35. Ф.У. Исакулов, У.А. Ахмадов. ВЫБОР ОПТИМАЛЬНОГО ДИАМЕТРА СКВАЖИН ДЛЯ ПРОИЗВОДСТВА ВЗРЫВНЫХ РАБОТ НА УГОЛЬНОМ МЕСТОРОЖДЕНИЕ «РАЗРЕЗ АНГРЕНСКИЙ» // IJODKOR OʻQITUVCHI. 2024. Т. 4. №. 37. С. 175-180.
- 36. S.I. Erkaboyeva, A. Yunusov, G.M. Samadova. AGʻDARMALAR XOSIL QILISHNING MUXANDIS-GEOLOGIK TAXLILI // IMRAS, -2024. T. 7. №. 7. C. 792-797.
- 37. А.С. Хасанов, М.А. Эргашев. ИЗУЧЕНИЕ ЗОЛОТА В ПРОБЕ РУДЫ МЕСТОРОЖДЕНИЯ «ЕШЛИК I» // IJODKOR OʻQITUVCHI, 2023. Т. 3. №. 33. С. 236-242.